Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Adv Space Res ; 33(8): 1306-10, 2004.
Article in English | MEDLINE | ID: mdl-15806706

ABSTRACT

The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlled by UV spectroscopy and microscopy. To provide experimental evidence for the hypothesis that interplanetary transfer of the genetic material is possible, phage T7 and isolated T7 DNA thin films have been exposed to selected space conditions: intense UVC radiation (lambda=254 nm) and high vacuum (10(-4) Pa). The effects of DNA hydration, conformation and packing on UV radiation damage were examined. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA.


Subject(s)
Bacteriophage T7/genetics , Bacteriophage T7/radiation effects , DNA, Bacterial/radiation effects , Ultraviolet Rays , Uracil/radiation effects , Vacuum , DNA, Viral/radiation effects , Dose-Response Relationship, Radiation , Extraterrestrial Environment , Radiation Dosage , Spectrophotometry
2.
Adv Space Res ; 33(8): 1294-301, 2004.
Article in English | MEDLINE | ID: mdl-15803617

ABSTRACT

The survivability of resistant terrestrial microbes, bacterial spores of Bacillus subtilis, was investigated in the BIOPAN facility of the European Space Agency onboard of Russian Earth-orbiting FOTON satellites (BIOPAN I -III missions). The spores were exposed to different subsets of the extreme environmental parameters in space (vacuum, extraterrestrial solar UV, shielding by protecting materials like artificial meteorites). The results of the three space experiments confirmed the deleterious effects of extraterrestrial solar UV radiation which, in contrast to the UV radiation reaching the surface of the Earth, also contains the very energy-rich, short wavelength UVB and UVC radiation. Thin layers of clay, rock or meteorite material were shown to be only successful in UV-shielding, if they are in direct contact with the spores. On Mars the UV radiation climate is similar to that of the early Earth before the development of a protective ozone layer in the atmosphere by the appearance of the first aerobic photosynthetic bacteria. The interference of Martian soil components and the intense and nearly unfiltered Martian solar UV radiation with spores of B. subtilis will be tested with a new BIOPAN experiment, MARSTOX. Different types of Mars soil analogues will be used to determine on one hand their potential toxicity alone or in combination with solar UV (phototoxicity) and on the other hand their UV protection capability. Two sets of samples will be placed under different cut-off filters used to simulate the UV radiation climate of Mars and Earth. After exposure in space the survival of and mutation induction in the spores will be analyzed at the DLR, together with parallel samples from the corresponding ground control experiment performed in the laboratory. This experiment will provide new insights into the principal limits of life and its adaptation to environmental extremes on Earth or other planets which and will also have implications for the potential for the evolution and distribution of life.


Subject(s)
Extraterrestrial Environment , Radiation Protection , Space Flight , Spores, Bacterial/radiation effects , Ultraviolet Rays , Bacillus subtilis , Mars , Meteoroids , Soil , Spacecraft , Vacuum , Weightlessness
3.
Orig Life Evol Biosph ; 31(6): 527-47, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11770260

ABSTRACT

Spores of Bacillus subtilis were exposed to space in the BIOPAN facility of the European Space Agency onboard of the Russian Earth-orbiting FOTON satellite. The spores were exposed either in dry layers without any protecting agent, or mixed with clay, red sandstone, Martian analogue soil or meteorite powder, in dry layers as well as in so-called 'artificial meteorites', i.e. cubes filled with clay and spores in naturally occurring concentrations. After about 2 weeks in space, their survival was tested from the number of colony formers. Unprotected spores in layers open to space or behind a quartz window were completely or nearly completely inactivated (survival rates in most cases < or = 10(-6)). The same low survival was obtained behind a thin layer of clay acting as an optical filter. The survival rate was increased by 5 orders of magnitude and more, if the spores in the dry layer were directly mixed with powder of clay, rock or meteorites, and up to 100% survival was reached in soil mixtures with spores comparable to the natural soil to spore ratio. These data confirm the deleterious effects of extraterrestrial solar UV radiation. Thin layers of clay, rock or meteorite are only successful in UV-shielding, if they are in direct contact with the spores. The data suggest that in a scenario of interplanetary transfer of life, small rock ejecta of a few cm in diameter could be sufficiently large to protect bacterial spores against the intense insolation; however, micron-sized grains, as originally requested by Panspermia, may not provide sufficient protection for spores to survive. The data are also pertinent to search for life on Mars and planetary protection considerations for future missions to Mars.


Subject(s)
Space Flight , Spores, Bacterial , Bacillus subtilis , Extraterrestrial Environment , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...