Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(7): 8320-8332, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405538

ABSTRACT

We study foam production and destabilization through a flow-focusing geometry, namely a single pore of rectangular cross-section, by coinjecting gas and liquid at constant pressure, Pg, and constant flow rate, Qw. We observe that bubble production results from a Rayleigh-Plateau destabilization of the internal gas thread that occurs at the pore neck when its width becomes comparable to the height of the rectangular-section channel. Using a simple model and numerical approach, we (i) predict the shape of the gas jet and its stability range as a function of flow parameters and device geometry, which we successfully compare with our experimental results, and (ii) demonstrate the existence of a critical local pressure drop at the pore neck that determines whether or not a stable gas flow can form. We thus show that bubble foam generation exhibits hysteretic behavior due to hydrodynamic feedback and demonstrate that there is a maximum bubble volume fraction that the generated foam cannot exceed, the value of which is fixed by the geometry. Our results suggest that the foam collapse observed in porous media when the fractional gas flow becomes too large may result from hydrodynamic feedback inhibiting foam generation and not necessarily from coalescence between bubbles, as is usually claimed.

3.
ACS Omega ; 6(42): 27976-27983, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34722997

ABSTRACT

We investigate the role of adding a water-soluble surfactant (Tween 20) that acts as a demulsifier on the stability of water-in-dodecane emulsions stabilized with Span 80. Performing bottle test experiments, we monitor the emulsion separation process. Initially, water droplets sediment fast (∼10 min) until they become closely packed and form the so-called dense packed layer (DPL). The presence of the DPL, a long-lived metastable high-water-fraction (70-90%) emulsion separating bulk oil and water layers, slows down significantly the kinetics (∼105 min) of water separation. Once the DPL is formed, the ratio of the volume of separated water to the total water amount is called as water separation efficiency. We assume that the emulsion stability is reached when the coverage of the emulsifier surfactant exceeds 80% and use the ideal solution approximation. From that, we rationalize the water separation efficiency and the minimum demulsifier concentration required to maximize it, in terms of the mean droplet size, the surfactant concentrations, the total water volume fraction, and the adsorption strength of the water-soluble surfactant. Model predictions and experimental findings are in excellent agreement. We further test the validity and robustness of our theoretical model, by applying it successfully to data found in the literature on water-in-crude oil emulsion systems. Ultimately, our results prove that the efficiency of a demulsifier agent to break a W/O emulsion strongly correlates to its adsorption strength at the W/O interface, providing a novel contribution to the selection guidelines of chemical demulsifiers.

4.
Langmuir ; 37(29): 8726-8737, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34266236

ABSTRACT

By conducting both a bottle test and isolate drop-drop experiments, we determine the coalescence rates of water droplets within water-in-oil emulsions stabilized by a large amount of Span 80 in the presence of Tween 20, a surfactant that acts as a demulsifier. Using a microscopic model based on a theory of hole nucleation, we establish an analytical formula that quantitatively predicts the coalescence frequency per unit area of droplets whose interfaces are fully covered by surfactant molecules. Despite its simplicity and the strong assumptions made for its derivation, this formula captures our experimental findings on Span 80-stabilized emulsions as well as other results, found in the literature, remarkably well on a wide range of water-in-crude oil systems.

5.
Phys Rev Lett ; 116(7): 077801, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26943558

ABSTRACT

Making soap bubbles by blowing air on a soap film is an enjoyable activity, yet a poorly understood phenomenon. Working either with circular bubble wands or long-lived vertical soap films having an adjustable steady state thickness, we investigate the formation of such bubbles when a gas is blown through a nozzle onto a film. We vary film size, nozzle radius, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are formed. The response is sensitive to containment, i.e., the ratio between film and jet sizes, and dissipation in the turbulent gas jet, which is a function of the distance from the film to the nozzle. We rationalize the observed four different regimes by comparing the dynamic pressure exerted by the jet on the film and the Laplace pressure needed to create the curved surface of a bubble. This simple model allows us to account for the interplay between hydrodynamic, physicochemical, and geometrical factors.

6.
Soft Matter ; 11(12): 2454-60, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25668310

ABSTRACT

Depending on the capillary number at play and the parameters of the flow geometry, a drop may or may not break when colliding with an obstacle in a microdevice. Modeling the flow of one-dimensional trains of monodisperse drops impacting a micro-obstacle, we show numerically that complex dynamics may arise through drop-to-drop hydrodynamic interactions: we observe sequences of breakup events in which the size of the daughter drops created upon breaking mother ones becomes a periodic function of time. We demonstrate the existence of numerous bifurcations between periodic breakup regimes and we establish diagrams mapping the possible breakup dynamics as a function of the governing (physicochemical, hydrodynamic, and geometric) parameters. Microfluidic experiments validate our model as they concur very well with predictions.

7.
Soft Matter ; 10(26): 4743-8, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-24852036

ABSTRACT

The combination of two drop makers such as flow focusing geometries or ┬ junctions is commonly used in microfluidics to fabricate monodisperse double emulsions and novel fluid-based materials. Here we investigate the physics of the encapsulation of small droplets inside large drops that is at the core of such processes. The number of droplets per drop studied over time for large sequences of consecutive drops reveals that the dynamics of these systems are complex: we find a succession of well-defined elementary patterns and defects. We present a simple model based on a discrete approach that predicts the nature of these patterns and their non-trivial scheme of arrangement in a sequence as a function of the ratio of the two timescales of the problem, the production times of droplets and drops. Experiments validate our model as they concur very well with predictions.

8.
Lab Chip ; 13(15): 3022-32, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23743651

ABSTRACT

Using two different geometries, rectangular obstacles and asymmetric loops, we investigate the breakup dynamics of deformable objects, such as drops and bubbles, confined in microfluidic devices. We thoroughly study two distinct flow configurations that depend on whether object-to-object hydrodynamic interactions are allowed. When such interactions are introduced, we find that the volumes of the daughter objects created after breakup solely depend on the geometrical features of the devices and are not affected by the hydrodynamic and physicochemical variables; these results are in sharp contrast with those obtained for non-interacting objects. For both configurations, we provide simple phenomenological models that capture well the experimental findings and predict the evolution of the volumes of the daughter objects with the controlling dimensionless quantities that are identified. We introduce a mean-field approximation, which permits accounting for the interactions between objects during breakup and we discuss its conditions of validity.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(3 Pt 2): 036317, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23031023

ABSTRACT

Combining experiments and theory, we investigate the break-up dynamics of deformable objects, such as drops and bubbles, against a linear micro-obstacle. Our experiments bring the role of the viscosity contrast Δη between dispersed and continuous phases to light: the evolution of the critical capillary number to break a drop as a function of its size is either nonmonotonic (Δη>0) or monotonic (Δη≤0). In the case of positive viscosity contrasts, experiments and modeling reveal the existence of an unexpected critical object size for which the critical capillary number for breakup is minimum. Using simple physical arguments, we derive a model that well describes observations, provides diagrams mapping the four hydrodynamic regimes identified experimentally, and demonstrates that the critical size originating from confinement solely depends on geometrical parameters of the obstacle.


Subject(s)
Microfluidics/methods , Models, Chemical , Solutions/chemistry , Computer Simulation , Friction , Shear Strength , Viscosity
10.
Lab Chip ; 11(23): 4057-62, 2011 Dec 07.
Article in English | MEDLINE | ID: mdl-22012599

ABSTRACT

We present a novel millifluidic droplet analyser (MDA) for precisely monitoring the dynamics of microbial populations over multiple generations in numerous (≥10(3)) aqueous emulsion droplets (~100 nL). As a first application, we measure the growth rate of a bacterial strain and determine the minimal inhibitory concentration (MIC) for the antibiotic cefotaxime by incubating bacteria in a fine gradient of antibiotic concentrations. The detection of cell activity is based on the automated detection of an epifluorescent signal that allows the monitoring of microbial populations up to a size of ~10(6) cells. We believe that this device is helpful for the study of population dynamic consequences of microbe-environment interactions and of individual cell differences. Moreover, the fluidic machine may improve clinical tests, as it simplifies, automates and miniaturizes the screening of numerous microbial populations that grow and evolve in compartments with a finely tuned composition.


Subject(s)
Microfluidic Analytical Techniques/methods , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Cefotaxime/pharmacology , Microbial Sensitivity Tests , Microfluidic Analytical Techniques/instrumentation , Oils/chemistry , Water/chemistry
11.
Lab Chip ; 11(5): 779-87, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21157611

ABSTRACT

This mini-review focuses on two different miniaturizing approaches: the first one describes the generation and use of droplets flowing within a millifluidic tool as individual batch microreactors. The second one reports the use of high pressure microflows in chemistry. Millifluidics is an inexpensive, versatile and easy to use approach which is upscaled from microfluidics. It enables one to produce hierarchically organized multiple emulsions or particles with a good control over sizes and shapes, as well as to provide a convenient data acquisition platform dedicated to slow or rather fast chemical reactions, i.e., from hours to a few minutes. High-pressure resistant devices were recently fabricated and used to generate stable droplets from pressurized fluids such as supercritical fluid-liquid systems. We believe that supercritical microfluidics is a promising tool to develop sustainable processes in chemistry.

12.
Langmuir ; 22(14): 6438-45, 2006 Jul 04.
Article in English | MEDLINE | ID: mdl-16800711

ABSTRACT

In this work, a viscosimeter implemented on a microfluidic chip is presented. The physical principle of this system is to use laminar parallel flows in a microfluidic channel. The fluid to be studied flows side by side with a reference fluid of known viscosity. By using optical microscopy, the shape of the interface between both fluids can be determined. Knowing the flow rates of the two liquids and the geometrical features of the channel, the mean shear rate sustained by the fluid and its viscosity can thus be computed. Accurate and precise measurements of the viscosity as a function of the shear rate can be made using less than 300 microL of fluid. Several complex fluids are tested with viscosities ranging from 10(-)(3) to 70 Pa.s.

13.
Phys Rev Lett ; 95(20): 208304, 2005 Nov 11.
Article in English | MEDLINE | ID: mdl-16384111

ABSTRACT

We report that, when a train of confined droplets flowing through a channel reaches a junction, the droplets either are alternately distributed between the different outlets or all collect into the shortest one. We argue that this behavior is due to the hydrodynamic feedback of droplets in the different outlets on the selection process occurring at the junction. A "mean field" model, yielding semiquantitative results, offers a first guide to predict droplet traffic in branched networks.


Subject(s)
Microfluidics , Nanotechnology
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(1 Pt 1): 011404, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16089958

ABSTRACT

In closed systems, control over the size of monodisperse metal-oxide colloids is generally limited to submicrometric dimensions. To overcome this difficulty, we explore the formation and growth of silica particles under constant monomer supply. The monomer source is externally driven by the progressive addition into the system of one of the precursors. Monodisperse spherical particles are produced up to a mesoscopic size. We analyze their growth versus the monomer addition rate at different temperatures. Our results show that in the presence of a continuous monomer addition, growth is limited by diffusion over the investigated temporal window. Using the temperature variation of the growth rate, we prove that rescaling leads to a data reduction onto a single master curve. Contrary to the growth process, the final particle's size reached after the end of the reagent supply strongly depends on the addition rate. The variation of the final particle size versus addition rate can be deduced from an analogy with crystal formation in jet precipitation. Within this framework, and using the temperature dependences of both the particle growth law and the final size, we determine the value of the molecular heat of dissolution associated to the silica solubility. These observations support the fact that classical theories of phase-ordering dynamics can be extended to the synthesis of inorganic particles. The emergence of a master behavior in the presence of continuous monomer addition also suggests the extension of these theories to open systems.

15.
Phys Rev Lett ; 92(1): 018305, 2004 Jan 09.
Article in English | MEDLINE | ID: mdl-14754028

ABSTRACT

Experimental observations of droplet size sustained oscillations are reported in a two-phase flow between a lamellar and a sponge phase. Under shear flow, this system presents two different steady states made of monodisperse multilamellar droplets, separated by a shear-thinning transition. At low and high shear rates, the droplet size results from a balance between surface tension and viscous stress, whereas for intermediate shear rates it becomes a periodic function of time. A possible mechanism for such kinds of oscillations is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...