Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 20(8): 4236-4255, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37455392

ABSTRACT

A surgically implantable device is an inevitable treatment option for millions of people worldwide suffering from diseases arising from orthopedic injuries. A global paradigm shift is currently underway to tailor and personalize replacement or reconstructive joints. Additive manufacturing (AM) has provided dynamic outflow to the customized fabrication of orthopedic implants by enabling need-based design and surface modification possibilities. Surgical grade 316L Stainless Steel (316L SS) is promising with its cost, strength, composition, and corrosion resistance to fabricate 3D implants. This work investigates the possibilities of application of the laser powder bed fusion (L-PBF) technique to fabricate 3D-printed (3DP) implants, which are functionalized with a multilayered antimicrobial coating to treat potential complications arising due to postsurgical infections (PSIs). Postsurgical implant-associated infection is a primary reason for implantation failure and is complicated mainly by bacterial colonization and biofilm formation at the installation site. PLGA (poly-d,l-lactide-co-glycolide), a biodegradable polymer, was utilized to impart multiple layers of coating using the airbrush spray technique on 3DP implant surfaces loaded with gentamicin (GEN). Various PLGA-based polymers were tested to optimize the ideal lactic acid: glycolic acid ratio and molecular weight suited for our investigation. 3D-Printed PLGA-GEN substrates sustained the release of gentamicin from the surface for approximately 6 weeks. The 3DP surface modification with PLGA-GEN facilitated cell adhesion and proliferation compared to control surfaces. The cell viability studies showed that the implants were safe for application. The 3DP PLGA-GEN substrates showed good concentration-dependent antibacterial efficacy against the common PSI pathogen Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). The GEN-loaded substrates demonstrated antimicrobial longevity and showed significant biofilm growth inhibition compared to control. The substrates offered great versatility regarding the in vitro release rates, antimicrobial properties, and biocompatibility studies. These results radiate great potential in future human and veterinary clinical applications pertinent to complications arising from PSIs, focusing on personalized sustained antibiotic delivery.


Subject(s)
Anti-Infective Agents , Gentamicins , Humans , Gentamicins/pharmacology , Gentamicins/chemistry , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcus epidermidis , Polymers , Printing, Three-Dimensional
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3157-3160, 2021 11.
Article in English | MEDLINE | ID: mdl-34891911

ABSTRACT

For a tomographic imaging system, image reconstruction quality is dependent on the accurate determination of coordinates for the true center of rotation (COR). A significant COR offset error may introduce ringing, streaking, or other artifacts, while smaller error in determining COR may blur the reconstructed image. Well known COR correction techniques including image registration, center of mass calculation, or reconstruction evaluation work well under certain conditions. However, many of these methods do not consider various real-world cases such as a tilted sensor or non-parallel projections. Furthermore, a limited number of projections introduces stripe artifacts into the image reconstruction that interfere with many of these classic COR correction techniques. In this paper, we propose a revised variance-based algorithm to find the correct COR position automatically prior to tomographic reconstruction. The algorithm was tested on both simulated phantoms and acquired datasets, and our results show improved reconstruction accuracy.


Subject(s)
Artifacts , Cone-Beam Computed Tomography , Algorithms , Phantoms, Imaging , Rotation
3.
Article in English | MEDLINE | ID: mdl-34369738

ABSTRACT

Melanoma is one of the most aggressive forms of cancer with limited treatment options available. Successful treatment involves a combination of surgical resection of the tumor; chemotherapy and immunotherapy. Given their complex nature, the rapid development of drug resistance and metastatic spread, nanotechnology-based therapeutics are an attractive option for effective melanoma treatment. Nano-vesicular-based delivery systems hold the promise of aiding in the diagnosis and treatment of melanoma. These formulations can improve targeted delivery, deliver insoluble drugs belonging to class II, biopharmaceutical classification system, and alter drug pharmacokinetics and exposure profiles. These nanometer-sized carriers predominantly bypass the reticuloendothelial system and, thereby, improve blood circulation time and enhance tumor cell uptake with reduced toxicity. In this review, various lipid-based nano-formulations used in the diagnosis, treatment, or both for melanoma are discussed. Utilization of these na-no-formulations with a single drug or a combination of drugs, nucleic acid-based compounds (small interfering RNA, DNA) and targeting antibodies as other possibilities for melanoma are reviewed. We also present a state-of-the-art overview of alternative therapeutic approaches for the treatment of melanoma, such as photodynamic, immune, and gene therapies.


Subject(s)
Melanoma , Drug Compounding , Drug Delivery Systems , Humans , Immunotherapy , Lipids , Melanoma/drug therapy
4.
AAPS PharmSciTech ; 21(8): 304, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33150503

ABSTRACT

Hispolon is a small molecular weight polyphenol that has antioxidant, anti-inflammatory, and anti-proliferative activities. Our recent study has demonstrated hispolon as a potent apoptosis inducer in melanoma cell lines. Doxorubicin is a broad spectrum first-line treatment for various kinds of cancers. In this study, co-delivery of doxorubicin and hispolon using a liposomal system in B16BL6 melanoma cell lines for synergistic cytotoxic effects was investigated. Liposomes were prepared using a lipid film hydration method and loaded with doxorubicin or hispolon. The formulations were characterized for particle size distribution, release profile, and encapsulation efficiency (EE). In addition, in vitro cytotoxicity, in vitro cell apoptosis, and cellular uptake were evaluated. Liposomes exhibited small particle size (mean diameter ~ 100 nm) and narrow size distribution (polydispersity index (< 0.2) and high drug EE% (> 90%). The release from liposomes showed slower release compared to free drug solution as an additional time required for the release of drug from the liposome lipid bilayer. Liposome loaded with doxorubicin or hispolon exhibited significantly higher cytotoxicity against B16BL6 melanoma cells as compared to doxorubicin solution or hispolon solution. Likewise, co-delivery of hispolon and doxorubicin liposomes showed two-fold and three-fold higher cytotoxicity, as compared to hispolon liposomes or doxorubicin liposomes, respectively. In addition, co-delivery of doxorubicin and hispolon in liposomes enhanced apoptosis more than the individual drugs in the liposome formulation. In conclusion, the co-delivery of hispolon and doxorubicin could be a promising therapeutic approach to improve clinical outcomes against melanoma.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Catechols/administration & dosage , Doxorubicin/analogs & derivatives , Melanoma/drug therapy , Animals , Antibiotics, Antineoplastic/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Doxorubicin/administration & dosage , Humans , Lipid Bilayers , Melanoma/pathology , Particle Size , Polyethylene Glycols/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...