Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Front Nutr ; 8: 753476, 2021.
Article in English | MEDLINE | ID: mdl-34859029

ABSTRACT

The effect on color of the initial pH employed in dulce de leche (DL) production was evaluated through physicochemical and spectroscopical characterization of the melanoidins formed in the process. Melanoidins originated at pH values of 6.5, 7.0, and 7.5, and they were released by the enzymatic hydrolysis of the protein backbone and purified by gel filtration. They showed a significant degree of polydispersity, in general, with molecular weights (MWs) below 1,800 Da. DL produced at a higher pH released melanoidins with higher average MW after the enzymatic hydrolysis. They also presented darker colors (dE*ab, C*), more closely resembling those typical of the commercial product. Analysis of the fractions isolated by gel filtration using HPLC-DAD and multinuclear NMR showed an heterogeneous and complex composition. Even though structurally related, the 1H NMR spectra of melanoidins showed a higher degree of aromaticity at higher pH values. In conclusion, the pH employed in DL production affects the amount and structure of the colored products originated by MR reactions, and thus the color of the final product.

2.
Molecules ; 24(22)2019 Nov 17.
Article in English | MEDLINE | ID: mdl-31744182

ABSTRACT

Melanoidins, the brown-colored compounds formed through the Maillard reaction, are responsible for color development in dulce de leche (DL), a popular confectionary dairy product in the Río de la Plata region, particularly in Uruguay and Argentina. Color is a critical quality parameter that strongly influences consumer preference. This work aimed to develop a method to perform preliminary structural characterization of the chromophores produced by the Maillard reaction. Melanoidins are present in a water-insoluble fraction, linked to a protein backbone, conforming melanoproteins of high molecular weight. The insoluble melanoprotein fraction (10% total solids) was isolated, and the chromophores released by proteolysis and isolated by gel-permeation chromatography. The analysis of the products revealed that they present a high degree of molecular weight (MW) polydispersity, in a range of 300 to 2000 Da, where the compounds of higher molecular weight contributed the most to the color of the product. The isolated fractions were further analyzed by RP-HPLC using a diode array detector (DAD) detector. These results, together with H-NMR data, suggested that the chromophores isolated belonged to a relatively simple mixture of aromatic products with higher hydrophobic character relative to other products of the melanoprotein digestion.


Subject(s)
Dairy Products/analysis , Polymers/chemistry , Polymers/isolation & purification , Chromatography, High Pressure Liquid , Hydrolysis , Magnetic Resonance Spectroscopy , Molecular Weight , Pigmentation , Solubility
3.
Ciênc. rural (Online) ; 48(5): e20170807, 2018. tab, graf
Article in English | LILACS | ID: biblio-1045114

ABSTRACT

ABSTRACT: This paper aim to evaluate the ultrafiltration (UF) process for constituents recovery from whey. Sequences of factorial designs were performed by varying temperature (5 to 40°C) and pressure (1 to 3 bar), to maximize the proteins concentration using membrane of 100kDa in dead end system. Based on the best result new experiments were performed with membrane of 50kDa and 10kDa. With the membrane of 50 the protein retention was about 3 times higher than the membrane of 100kDa. The concentrated obtained by UF membrane of 10kDa, 10°C and 2 bar in laboratory scale showed a mean protein retention of 80 %, greater protein solubility, emulsion stability and the identification of β-lactoglobulins (18.3 kDa) and α-lactalbumin fractions (14.2kDa). Therefore, the use of membrane of 100 and 50kDa are became a industrially recommendable alternatives to concentration of whey proteins, and/or as a previous step to the fractionation of whey constituents using membrane ≤10kDa, aiming at future applications in different areas (food, pharmaceutical, chemical, etc.).


RESUMO: O objetivo do estudo foi avaliar o processo de Ultrafiltração (UF) na recuperação dos constituintes do soro de leite. Planejamentos fatoriais sequenciais foram realizados, variando a temperatura (5 a 40°C), a pressão (1 a 3 bar) e visando maximizar a concentração de proteínas usando membrana de 100kDa em sistema dead end. Baseados nos melhores resultados, foram realizados experimentos com de 50kDa e 10kDa. Em relação a membrana de 50kDa, a retenção de proteínas foi cerca de três vezes maior em relação a membrana de 100kDa. O concentrado obtido por membrana UF de 10kDa, 10°C e 2 bar, em escala laboratorial, mostrou uma retenção média de proteína de 80%, maior solubilidade protéica, estabilidade da emulsão e a identificação das frações β-lactoglobulins (18.3kDa) e α-lactalbumin (14.2kDa). Portanto, o uso de membranas de 100 e 50kDa são alternativas recomendáveis industrialmente à concentração de proteínas de soro de leite, e/ou como etapa anterior ao fracionamento de constituintes do soro usando membrana ≤10kDa, visando aplicações futuras em difentes áreas (alimentícia, farmacêutica, química, etc).

SELECTION OF CITATIONS
SEARCH DETAIL
...