Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 11(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35741983

ABSTRACT

Mackerel (Scomber australasicus) steaming juice (MSJ) can be a good source of proteins. However, it is often treated as food waste during the canning process. The objective of this study was to investigate the Angiotensin-I converting enzyme (ACE-I) inhibitory and antioxidant activities from MSJ hydrolysates using in silico and in vitro approaches. Proteins extracted from MSJ were identified by proteomic techniques, followed by sulfate polyacrylamide gel electrophoresis (SDS-PAGE), in-gel digestion, tandem mass spectrometry and on-line Mascot database analysis. Myosin heavy chain (fast skeletal muscle), actin, myosin light chain 1 (skeletal muscle isoform), collagen alpha-2(I) chain, tropomyosin alpha-1 chain, beta-enolase, fructose-bisphosphate aldolase A and glyceraldehyde-3- phosphate dehydrogenase were identified and further analyzed using BIOPEP-UWM database. In silico results indicated that MSJ proteins had potential bioactive peptides of antioxidant and ACE-I inhibitory activities. MSJ was then hydrolyzed using six proteases (papain, pepsin, proteinase k, alcalase, bromelain, thermolysin). In particular, pepsin hydrolysates (5 mg/mL) showed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (61.54%) among others. Alcalase hydrolysates (5 mg/mL) exhibited the highest metal chelating activity (89.76%) and proteinase K hydrolysates (5 mg/mL) indicated the highest reducing power activity (1.52 abs). Moreover, pepsin hydrolysates (0.1 mg/mL) possessed the highest ACE inhibitory activity (86.15%). Current findings suggest that MSJ hydrolysates can be a potential material to produce ACE-I inhibitory and antioxidant peptides as nutraceutical or pharmaceutical ingredients/products with added values.

2.
Int J Mol Sci ; 20(7)2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30978907

ABSTRACT

Chlorella is one of the most nutritionally important microalgae with high protein content and can be a good source of potential bioactive peptides. In the current study, isolated proteins from Chlorella sorokiniana were subjected to in silico analysis to predict potential peptides with biological activities. Molecular characteristics of proteins were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and proteomics techniques. A total of eight proteins were identified by proteomics techniques from 10 protein bands of the SDS-PAGE. The predictive result by BIOPEP's profile of bioactive peptides tools suggested that proteins of C. sorokiniana have the highest number of dipeptidyl peptidase-IV (DPP IV) inhibitors, with high occurrence of other bioactive peptides such as angiotensin-I converting enzyme (ACE) inhibitor, glucose uptake stimulant, antioxidant, regulating, anti-amnestic and antithrombotic peptides. In silico analysis of enzymatic hydrolysis revealed that pepsin (pH > 2), bromelain and papain were proteases that can release relatively larger quantity of bioactive peptides. In addition, combinations of different enzymes in hydrolysis were observed to dispense higher numbers of bioactive peptides from proteins compared to using individual proteases. Results suggest the potential of protein isolated from C. sorokiniana could be a source of high value products with pharmaceutical and nutraceutical application potential.


Subject(s)
Chlorella/chemistry , Peptides/chemistry , Plant Proteins/chemistry , Amino Acid Sequence , Chromatography, Liquid/methods , Drug Discovery , Electrophoresis, Polyacrylamide Gel/methods , Peptides/pharmacology , Plant Proteins/pharmacology , Proteomics/methods , Tandem Mass Spectrometry/methods
3.
Molecules ; 23(11)2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30413009

ABSTRACT

Major proteins contained in dried giant grouper roe (GR) such as vitellogenin (from Epinephelus coioides; NCBI accession number: AAW29031.1), apolipoprotein A-1 precursor (from Epinephelus coioides; NCBI accession number: ACI01807.1) and apolipoprotein E (from Epinephelus bruneus; NCBI accession number: AEB31283.1) were characterized through compiled proteomics techniques (SDS-PAGE, in-gel digestion, mass spectrometry and on-line Mascot database analysis). These proteins were subjected to in silico analysis using BLAST and BIOPEP-UWM database. Sequence similarity search by BLAST revealed that the aligned vitellogenin sequences from Epinephelus coioides and Epinephelus lanceolatus share 70% identity, which indicates that the sequence sample has significant similarity with proteins in sequence databases. Moreover, prediction of potential bioactivities through BIOPEP-UWM database resulted in high numbers of peptides predominantly with dipeptidyl peptidase-IV (DPP-IV) and angiotensin-I-converting enzyme (ACE-I) inhibitory activities. Pepsin (pH > 2) was predicted to be the most promising enzyme for the production of bioactive peptides from GR protein, which theoretically released 82 DPP-IV inhibitory peptides and 47 ACE-I inhibitory peptides. Overall, this work highlighted the potentiality of giant grouper roe as raw material for the generation of pharmaceutical products. Furthermore, the application of proteomics and in silico techniques provided rapid identification of proteins and useful prediction of its potential bioactivities.


Subject(s)
Bass/metabolism , Biological Factors/pharmacology , Peptides/pharmacology , Proteomics/methods , Amino Acid Sequence , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/metabolism , Apolipoproteins E/chemistry , Apolipoproteins E/metabolism , Biological Factors/chemistry , Computer Simulation , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Fish Proteins/chemistry , Fish Proteins/metabolism , Hydrolysis , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Hydrolases/metabolism , Peptides/chemistry , Sequence Alignment , Vitellogenins/chemistry , Vitellogenins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...