Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 11(3)2023 03.
Article in English | MEDLINE | ID: mdl-36918221

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapies have demonstrated transformational outcomes in the treatment of B-cell malignancies, but their widespread use is hindered by technical and logistical challenges associated with ex vivo cell manufacturing. To overcome these challenges, we developed VivoVec, a lentiviral vector-based platform for in vivo engineering of T cells. UB-VV100, a VivoVec clinical candidate for the treatment of B-cell malignancies, displays an anti-CD3 single-chain variable fragment (scFv) on the surface and delivers a genetic payload that encodes a second-generation CD19-targeted CAR along with a rapamycin-activated cytokine receptor (RACR) system designed to overcome the need for lymphodepleting chemotherapy in supporting successful CAR T-cell expansion and persistence. In the presence of exogenous rapamycin, non-transduced immune cells are suppressed, while the RACR system in transduced cells converts rapamycin binding to an interleukin (IL)-2/IL-15 signal to promote proliferation. METHODS: UB-VV100 was administered to peripheral blood mononuclear cells (PBMCs) from healthy donors and from patients with B-cell malignancy without additional stimulation. Cultures were assessed for CAR T-cell transduction and function. Biodistribution was evaluated in CD34-humanized mice and in canines. In vivo efficacy was evaluated against normal B cells in CD34-humanized mice and against systemic tumor xenografts in PBMC-humanized mice. RESULTS: In vitro, administration of UB-VV100 resulted in dose-dependent and anti-CD3 scFv-dependent T-cell activation and CAR T-cell transduction. The resulting CAR T cells exhibited selective expansion in rapamycin and antigen-dependent activity against malignant B-cell targets. In humanized mouse and canine studies, UB-VV100 demonstrated a favorable biodistribution profile, with transduction events limited to the immune compartment after intranodal or intraperitoneal administration. Administration of UB-VV100 to humanized mice engrafted with B-cell tumors resulted in CAR T-cell transduction, expansion, and elimination of systemic malignancy. CONCLUSIONS: These findings demonstrate that UB-VV100 generates functional CAR T cells in vivo, which could expand patient access to CAR T technology in both hematological and solid tumors without the need for ex vivo cell manufacturing.


Subject(s)
Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Animals , Dogs , Mice , Receptors, Chimeric Antigen/genetics , Receptors, Antigen, T-Cell , Leukocytes, Mononuclear , Tissue Distribution , Cell Engineering/methods
2.
PLoS Pathog ; 16(2): e1008286, 2020 02.
Article in English | MEDLINE | ID: mdl-32023326

ABSTRACT

A reservoir of HIV-infected cells that persists despite suppressive antiretroviral therapy (ART) is the source of viral rebound upon ART cessation and the major barrier to a cure. Understanding reservoir seeding dynamics will help identify the best timing for HIV cure strategies. Here we characterize reservoir seeding using longitudinal samples from before and after ART initiation in individuals who sequentially became infected with genetically distinct HIV variants (superinfected). We previously identified cases of superinfection in a cohort of Kenyan women, and the dates of both initial infection and superinfection were determined. Six women, superinfected 0.2-5.2 years after initial infection, were subsequently treated with ART 5.4-18.0 years after initial infection. We performed next-generation sequencing of HIV gag and env RNA from plasma collected during acute infection as well as every ~2 years thereafter until ART initiation, and of HIV DNA from PBMCs collected 0.9-4.8 years after viral suppression on ART. We assessed phylogenetic relationships between HIV DNA reservoir sequences and longitudinal plasma RNA sequences prior to ART, to determine proportions of initial and superinfecting variants in the reservoir. The proportions of initial and superinfection lineage variants present in the HIV DNA reservoir were most similar to the proportions present in HIV RNA immediately prior to ART initiation. Phylogenetic analysis confirmed that the majority of HIV DNA reservoir sequences had the smallest pairwise distance to RNA sequences from timepoints closest to ART initiation. Our data suggest that while reservoir cells are created throughout pre-ART infection, the majority of HIV-infected cells that persist during ART entered the reservoir near the time of ART initiation. We estimate the half-life of pre-ART DNA reservoir sequences to be ~25 months, which is shorter than estimated reservoir decay rates during suppressive ART, implying continual decay and reseeding of the reservoir up to the point of ART initiation.


Subject(s)
DNA, Viral , HIV Infections , HIV-1 , Phylogeny , env Gene Products, Human Immunodeficiency Virus , gag Gene Products, Human Immunodeficiency Virus , Adult , DNA, Viral/blood , DNA, Viral/genetics , Female , Follow-Up Studies , HIV Infections/blood , HIV Infections/drug therapy , HIV Infections/genetics , HIV-1/genetics , HIV-1/metabolism , High-Throughput Nucleotide Sequencing , Humans , Kenya , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
3.
Open Forum Infect Dis ; 5(1): ofx268, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29354661

ABSTRACT

We compared change in HIV reservoir DNA following continued antiretroviral therapy (ART) vs short treatment interruption (TI) in early ART-treated Kenyan infants. While HIV DNA in the reservoir decayed with continued ART, HIV DNA levels were similar to pre-TI HIV DNA reservoir levels in most children after short TI.

SELECTION OF CITATIONS
SEARCH DETAIL
...