Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 5: e3897, 2017.
Article in English | MEDLINE | ID: mdl-29109909

ABSTRACT

In female Atlantic salmon (Salmo salar), exposure to warm summer temperatures causes a reduction in plasma 17ß-estradiol (E2), which impairs downstream vitellogenesis and zonagenesis, and reduces egg fertility and embryo survival. The aim of the present study was to determine whether E2-treatment could offset thermal impairment of endocrine function and maintain egg quality in maiden (first-time-spawning) S. salar reared at 22 °C. Treatment with E2 at 22 °C stimulated vitellogenin (vtg) gene expression and subsequent protein synthesis which promoted oocyte growth and increased egg size relative to untreated fish at 14 and 22 °C. However, E2-treatment at 22 °C was not associated with an increase in egg fertility and embryo survival relative to untreated fish at 22 °C, despite the positive effects of E2-treatment on vitellogenesis and oocyte growth. As there was no evidence to suggest that the estrogen receptor alpha expression was suppressed by high temperature, this could be due to the lack of stimulation on zonagenesis by E2-treatment observed at high temperature during oocyte development. Our results demonstrate that treatment with E2 is not able to maintain zonagenesis or egg quality in maiden S. salar at high temperature, even when vtg gene expression, protein synthesis and subsequent oocyte growth is promoted. This implies that the mechanisms regulating zonagenesis, but not vitellogenesis are impaired at elevated temperature in female S. salar broodstock, and highlights the remarkable complexity of thermally induced endocrine disruption in fish.

2.
PeerJ ; 5: e3898, 2017.
Article in English | MEDLINE | ID: mdl-29062601

ABSTRACT

Tasmanian Atlantic salmon (S. salar) broodstock can experience temperatures above 20 °C, which impairs reproductive development and inhibits ovulation. The present study investigated the prolonged use of gonadotropin releasing hormone analogue (GnRHa) during vitellogenesis as a means of maintaining endocrine function and promoting egg quality at elevated temperature in maiden and repeat spawning S. salar. GnRHa-treatment during vitellogenesis did not compensate for the negative effects of thermal challenge on the timing of ovulation, egg size, egg fertility or embryo survival in any fish maintained at 22 °C relative to 14 °C. The lack of effectiveness was reflected by the endocrine data, as plasma follicle stimulating hormone and luteinising hormone levels were not different between treated and untreated groups at 22 °C. Furthermore, plasma testosterone and E2 levels were unchanged in GnRHa-treated fish at 22 °C, and plasma levels were generally lower in both groups maintained at 22 °C relative to 14 °C. Transcription of vitellogenin, and zona pellucida B and C was not enhanced in GnRHa-treated fish relative to untreated fish at 22 °C, presumably due to observed suppression of plasma E2. These results indicate that thermal impairment of reproduction is likely to occur on multiple levels, and is difficult to overcome via hormonal manipulation.

3.
J Exp Zool A Ecol Genet Physiol ; 309(4): 184-97, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18278802

ABSTRACT

This study examined the endocrine and reproductive correlates of reproduction in 636 female and 468 male draughtboard sharks (Cephaloscyllium laticeps) captured from southeastern Australia. Females were oviparous and displayed a single external-type ovary with a maximum follicle diameter of 35 mm. Vitellogenesis commenced at a follicle diameter of 10 mm. Females showed a constant overlap between follicular recruitment, ovarian growth, and egg laying. The male reproductive tract consisted of paired testes with spermatocysts undergoing diametric development. Plasma levels of the presumptive gonadal steroids, testosterone (T), 17beta-estradiol (E2), progesterone (P4), and 11-ketotestosterone (11-KT; males only) were correlated with morphological developmental stages of the gonads. In females, E2 increased as the follicle developed before declining as the follicle reached maturity. T remained low during the first stages of ovarian growth and increased as the follicle reached maturity. P4 showed a peak just before ovulation. In males, T was the only hormone that varied with maturity, increasing in adults; E2 and P4 were present at low plasma concentrations in males and did not change with stage of gonadal development. 11-KT was undetectable at all times. Endocrine changes in draughtboard sharks were consistent with hormonal correlates reported for other species and suggest roles for E2( in females) and T (in both sexes) in gametogenesis and P4 in maturational events in females.


Subject(s)
Genitalia/anatomy & histology , Reproduction/physiology , Sharks/anatomy & histology , Sharks/metabolism , Age Factors , Animals , Female , Gonadal Steroid Hormones/blood , Male , Pacific Ocean , Sex Factors , Sharks/physiology , Spermatozoa/cytology , Tasmania
4.
Comp Biochem Physiol A Mol Integr Physiol ; 145(2): 195-203, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16870481

ABSTRACT

In order to assess the efficacy of selected aromatase inhibitors on Atlantic salmon (Salmo salar) ovarian and brain tissue, in vitro systems were developed for measuring 17beta-estradiol (E(2)) production by these tissues. Isolated vitellogenic follicles, or homogenised whole brains were incubated at 10 degrees C in complete Cortlands solution for 18 or 42 h respectively, and E(2) levels in the medium were determined by RIA. The addition of testosterone to the medium increased E(2) production in all preparations. E(2) production by whole brain homogenate was reduced by co-incubation with the aromatase inhibitors 1,4,6-androstatriene-3,17-dione (ATD), 4-androstene-4-ol-3,17-dione (OHA), aminoglutethimide, fadrozole or miconazole. Fadrozole, ATD, and OHA reduced E(2) production by vitellogenic follicles at a medium concentration of 0.1 microg mL(-1), whereas miconazole was only effective at 10 microg mL(-1). This study demonstrates a simple and rapid screening method for assessing the efficacy of aromatase inhibitors on fish tissues, and that the aromatase inhibitors ATD, OHA and fadrozole are potent inhibitors of both brain and gonadal aromatase in vitro, in Atlantic salmon.


Subject(s)
Aromatase Inhibitors/pharmacology , Estradiol/biosynthesis , Salmo salar/metabolism , Aminoglutethimide/pharmacology , Androstatrienes/pharmacology , Androstenedione/pharmacology , Animals , Brain/drug effects , Brain/metabolism , Fadrozole/pharmacology , Female , Miconazole/pharmacology , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Testosterone/pharmacology
5.
Gen Comp Endocrinol ; 135(3): 381-90, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14723890

ABSTRACT

Atlantic salmon (Salmo salar) broodstock were transferred from natural (12-16 degrees C) to controlled temperatures of 14, 18 or 22 degrees C for 3 months during vitellogenesis. Fertility and survival were significantly reduced in eggs from broodstock held at 22 degrees C relative to 14 or 18 degrees C. Endocrine mechanisms were disrupted after only one month at 22 degrees C, as evidenced by decreased plasma vitellogenin (Vtg) and increased plasma testosterone (T) levels and, at later stages, decreased levels of plasma 17beta-estradiol (E2). In vitro incubations of isolated ovarian follicles were carried out at monthly intervals, with follicles exposed to human chorionic gonadotropin, N-2-0-dibutyryladenosine 3,5-cyclic monophosphate, and the gonadal steroid precursors 17-hydroxyprogesterone, androstenedione, and T. After one month of exposure to controlled temperature, T synthesis was generally enhanced in response to all treatments at all temperatures, but E2 synthesis was inhibited at 22 degrees C, suggesting temperature impairment of cytochrome P450 aromatase (P450arom) synthesis or activity. The effect became less marked as follicles matured suggesting that temperature sensitivity is stage dependent. The results of this study suggest that the inhibitory effects of elevated temperature on E2 and Vtg synthesis, and subsequent egg development found in the present and earlier studies, arise at least partly, from temperature modulation of P450arom.


Subject(s)
Aromatase/metabolism , Ovarian Follicle/metabolism , Salmo salar/physiology , 17-alpha-Hydroxyprogesterone/pharmacology , Androstenedione/pharmacology , Animals , Body Weight/physiology , Bucladesine/pharmacology , Cell Survival/physiology , Chorionic Gonadotropin/pharmacology , Estradiol/blood , Estradiol/metabolism , Female , Fertility/physiology , In Vitro Techniques , Male , Organ Size/physiology , Ovarian Follicle/anatomy & histology , Ovarian Follicle/drug effects , Ovary/anatomy & histology , Ovulation/physiology , Reproduction/drug effects , Reproduction/physiology , Seasons , Temperature , Testosterone/blood , Testosterone/metabolism , Testosterone/pharmacology , Vitellogenins/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...