Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 7834, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37188838

ABSTRACT

The control of atmosphere content and concentration of specific gases are important tasks in many industrial processes, agriculture, environmental and medical applications. Thus there is a high demand to develop new advanced materials with enhanced gas sensing characteristics including high gas selectivity. Herein we report the result of a study on the synthesis, characterization, and investigation of gas sensing properties of In2O3-graphene-Cu composite nanomaterials for sensing elements of single-electrode semiconductor gas sensors. The nanocomposite has a closely interconnected and highly defective structure, which is characterized by high sensitivity to various oxidizing and reducing gases and selectivity to NO2. The In2O3-based materials were obtained by sol-gel method, by adding 0-6 wt% of pre-synthesized graphene-Cu powder into In-containing gel before xerogel formation. The graphene-Cu flakes played the role of centers for In2O3 nucleation and then crystal growth terminators. This led to the formation of structural defects, influencing the surface energy state and concentration of free electrons. The concentration of defects increases with the increase of graphene-Cu content from 1 to 4 wt%, which also affects the gas-sensing properties of the nanocomposites. The sensors show a high sensing response to both oxidizing (NO2) and reducing (acetone, ethanol, methane) gases at an optimal working heating current of 91-161 mA (280-510 °C). The sensor with nanocomposite with 4 wt% of graphene-Cu additive showed the highest sensitivity to NO2 (46 ppm) in comparison with other tested gases with an absolute value of sensing response of (- ) 225 mV at a heating current of 131 mA (430 °C) and linear dependence of sensing response to NO2 concentration.

2.
Dalton Trans ; 51(18): 7053-7067, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35393994

ABSTRACT

Metal-organic framework (MOF) core particles of MIL-101(Cr), aluminum fumarate (Basolite® A520), MIL-53-TDC, zirconium fumarate, and UiO-66 were modified by adsorption of thin polyelectrolyte (PE)-based shells without deterioration of their crystal structure. By applying different PEs and depositing a single layer (MOF/PE) or one to three layer-by-layer assembled bilayers (MOF/LbL), the mass percent of shell material in the composite was varied from 0.6-2.5% to 50%. Under a constant relative pressure of water vapor, the moisture uptake by a MOF/PE and a MOF/LbL is rather comparable with its S-shaped curvature to that of pristine MOFs. The relevant differences, such as a shift of the ascending adsorption part to lower/higher relative pressure or an increase/decrease in water uptake in selected regions, are associated with the core-shell structure and related to the morphological changes of the MOF powders. The hydrophilic surface promotes the formation of liquid menisci at the points of contact between particles and accelerates the moisture uptake and loss. A decrease in water sorption under an atmosphere with high humidity by some composites can be associated with the inhibition of liquid water condensation by the more hydrophobic shells.

3.
Beilstein J Nanotechnol ; 12: 343-353, 2021.
Article in English | MEDLINE | ID: mdl-33936923

ABSTRACT

We report for the first time the combination of WO3 sensing elements with a non-noble metal-carbon composite, namely a nickel metal nanoparticle-carbon composite (Ni@rGO). Previous work with WO3 had used either NiO (as part of the WO3 lattice), solely carbon, Pd-surface decorated WO3 (Pd@WO3), or Pd or Pt@carbon@WO3. We demonstrate the gas response for pure WO3, rGO/WO3 and Ni@rGO/WO3 sensing elements towards NO2 and acetone in air as well as towards CO in N2. The addition of 0.35 wt % Ni@rGO composite to WO3 enables the increase of the sensory response by more than 1.6 times for NO2 vapors. The gas response towards acetone using 0.35 wt % Ni@rGO/WO3 composite was 1.5 times greater for 3500 ppm than for 35,000 ppm acetone. For 0.35 wt % Ni@rGO/WO3 composite and CO gas, a response time (T res) of 7 min and a recovery time (T rec) of 2 min was determined.

4.
Chemphyschem ; 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30285314

ABSTRACT

Binary (Gd5 Si4 , GdSi) and ternary (Gd5 Si2 Ge2 ) compound nanoparticles (NPs) were prepared by laser irradiation of a mixture of colloidal solutions containing NPs of the relevant elements. It is assumed that the compound NPs are formed by heating, co-melting, and chemical interactions in the alloyed droplets. The blackbody-like radiation of the heated NPs was used for temperature control of the NP-preparation process. The obtained results demonstrate that laser irradiation of colloidal NPs provides unique possibilities not only for the synthesis of compound NPs but also for control of their phase composition and size. The synthesized Gd-based compound NPs exhibited magnetic transition at an ordering temperature, TC , in the range of 310-320 K. Thus, the magnetic properties of the synthesized particles confirm their potential for biomedical applications, in particular, for magnetic hyperthermia treatment.

5.
ChemSusChem ; 10(3): 600-611, 2017 02 08.
Article in English | MEDLINE | ID: mdl-27860352

ABSTRACT

Perovskite-related (La1-x Srx )2 NiO4-δ (x=0.5-0.8) phases were explored for possible use as oxygen electrodes in solid electrolyte cells with a main focus on the effect of oxygen deficiency on the electrocatalytic activity. (La1-x Srx )2 NiO4-δ solid solutions were demonstrated to preserve the K2 NiF4 -type tetragonal structure under oxidizing conditions. Acceptor-type substitution by Sr is compensated by the formation of oxygen vacancies and electron holes and progressively increases high-temperature oxygen nonstoichiometry, which reaches as high as δ=0.40 for x=0.8 at 950 °C in air. The electrical conductivity of (La1-x Srx )2 NiO4-δ ceramics at 500-1000 °C and p(O2 )≥10-3  atm is p-type metallic-like. The highest conductivity, 300 S cm-1 at 800 °C in air, is observed for x=0.6. The average thermal expansion coefficients, (14.0-15.4)×10-6  K-1 at 25-900 °C in air, are sufficiently low to ensure the thermomechanical compatibility with common solid electrolytes. The polarization resistance of porous (La1-x Srx )2 NiO4-δ electrodes applied on a Ce0.9 Gd0.1 O2-δ solid electrolyte decreases with increasing Sr concentration in correlation with the concentration of oxygen vacancies in the nickelate lattice and the anticipated level of mixed ionic-electronic conduction. However, this is accompanied by increasing reactivity between the cell components and necessitates the microstructural optimization of the electrode materials to reduce the electrode fabrication temperature.


Subject(s)
Calcium Compounds/chemistry , Oxides/chemistry , Oxygen/chemistry , Temperature , Titanium/chemistry , Electric Conductivity , Electrochemistry , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...