Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Med ; 13(14): e70026, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39041188

ABSTRACT

BACKGROUND: High-risk soft tissue sarcomas of the extremities and trunk wall (eSTS), as defined by the Sarculator nomogram, are more likely to benefit from (neo)adjuvant anthracycline-based therapy compared to low/intermediate-risk patients. The biology underpinning these differential treatment outcomes remain unknown. METHODS: We analysed proteomic profiles and clinical outcomes of 123 eSTS patients. A Cox model for overall survival including the Sarculator was fitted to individual data to define four risk groups. A DNA replication protein signature-Sarcoma Proteomic Module 6 (SPM6) was evaluated for association with clinicopathological factors and risk groups. SPM6 was added as a covariate together with Sarculator in a multivariable Cox model to assess improvement in prognostic risk stratification. RESULTS: DNA replication and cell cycle proteins were upregulated in high-risk versus very low-risk patients. Evaluation of the functional effects of CRISPR-Cas9 gene knockdown of proteins enriched in high-risk patients using the cancer cell line encyclopaedia database identified candidate drug targets. SPM6 was significantly associated with tumour malignancy grade (p = 1.6e-06), histology (p = 1.4e-05) and risk groups (p = 2.6e-06). Cox model analysis showed that SPM6 substantially contributed to a better calibration of the Sarculator nomogram (Index of Prediction Accuracy = 0.109 for Sarculator alone versus 0.165 for Sarculator + SPM6). CONCLUSIONS: Risk stratification of patient with STS is defined by distinct biological pathways across a range of cancer hallmarks. Incorporation of SPM6 protein signature improves prognostic risk stratification of the Sarculator nomogram. This study highlights the utility of integrating protein signatures for the development of next-generation nomograms.


Subject(s)
Extremities , Nomograms , Proteomics , Sarcoma , Humans , Male , Female , Sarcoma/metabolism , Sarcoma/genetics , Sarcoma/pathology , Sarcoma/mortality , Middle Aged , Prognosis , Proteomics/methods , Extremities/pathology , Risk Assessment/methods , Adult , Aged , Torso , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
2.
Clin Cancer Res ; 30(15): 3229-3242, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38810090

ABSTRACT

PURPOSE: The landscape of extracellular matrix (ECM) alterations in soft tissue sarcomas (STS) remains poorly characterized. We aimed to investigate the tumor ECM and adhesion signaling networks present in STS and their clinical implications. EXPERIMENTAL DESIGN: Proteomic and clinical data from 321 patients across 11 histological subtypes were analyzed to define ECM and integrin adhesion networks. Subgroup analysis was performed in leiomyosarcomas (LMS), dedifferentiated liposarcomas (DDLPS), and undifferentiated pleomorphic sarcomas (UPS). RESULTS: This analysis defined subtype-specific ECM profiles including enrichment of basement membrane proteins in LMS and ECM proteases in UPS. Across the cohort, we identified three distinct coregulated ECM networks which are associated with tumor malignancy grade and histological subtype. Comparative analysis of LMS cell line and patient proteomic data identified the lymphocyte cytosolic protein 1 cytoskeletal protein as a prognostic factor in LMS. Characterization of ECM network events in DDLPS revealed three subtypes with distinct oncogenic signaling pathways and survival outcomes. Evaluation of the DDLPS subtype with the poorest prognosis nominates ECM remodeling proteins as candidate antistromal therapeutic targets. Finally, we define a proteoglycan signature that is an independent prognostic factor for overall survival in DDLPS and UPS. CONCLUSIONS: STS comprise heterogeneous ECM signaling networks and matrix-specific features that have utility for risk stratification and therapy selection, which could in future guide precision medicine in these rare cancers.


Subject(s)
Extracellular Matrix , Proteomics , Sarcoma , Humans , Extracellular Matrix/metabolism , Sarcoma/pathology , Sarcoma/genetics , Sarcoma/metabolism , Proteomics/methods , Prognosis , Female , Male , Signal Transduction , Biomarkers, Tumor/metabolism , Middle Aged , Aged
3.
Nat Commun ; 14(1): 3834, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37386008

ABSTRACT

Soft tissue sarcomas (STS) are rare and diverse mesenchymal cancers with limited treatment options. Here we undertake comprehensive proteomic profiling of tumour specimens from 321 STS patients representing 11 histological subtypes. Within leiomyosarcomas, we identify three proteomic subtypes with distinct myogenesis and immune features, anatomical site distribution and survival outcomes. Characterisation of undifferentiated pleomorphic sarcomas and dedifferentiated liposarcomas with low infiltrating CD3 + T-lymphocyte levels nominates the complement cascade as a candidate immunotherapeutic target. Comparative analysis of proteomic and transcriptomic profiles highlights the proteomic-specific features for optimal risk stratification in angiosarcomas. Finally, we define functional signatures termed Sarcoma Proteomic Modules which transcend histological subtype classification and show that a vesicle transport protein signature is an independent prognostic factor for distant metastasis. Our study highlights the utility of proteomics for identifying molecular subgroups with implications for risk stratification and therapy selection and provides a rich resource for future sarcoma research.


Subject(s)
Hemangiosarcoma , Leiomyosarcoma , Sarcoma , Soft Tissue Neoplasms , Humans , Proteomics , Sarcoma/genetics , Leiomyosarcoma/genetics
4.
Front Cell Dev Biol ; 9: 763640, 2021.
Article in English | MEDLINE | ID: mdl-34957097

ABSTRACT

Soft tissue sarcomas are rare cancers of mesenchymal origin or differentiation comprising over 70 different histological subtypes. Due to their mesenchymal differentiation, sarcomas are thought to produce and deposit large quantities of extracellular matrix (ECM) components. Interactions between ECM ligands and their corresponding adhesion receptors such as the integrins and the discoidin domain receptors play key roles in driving many fundamental oncogenic processes including uncontrolled proliferation, cellular invasion and altered metabolism. In this review, we focus on emerging studies that describe the key ECM components commonly found in soft tissue sarcomas and discuss preclinical and clinical evidence outlining the important role that these proteins and their cognate adhesion receptors play in sarcomagenesis. We conclude by providing a perspective on the need for more comprehensive in-depth analyses of both the ECM and adhesion receptor biology in multiple histological subtypes in order to identify new drug targets and prognostic biomarkers for this group of rare diseases of unmet need.

5.
Cell Rep ; 29(9): 2810-2822.e5, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31775047

ABSTRACT

Lymph nodes (LNs) act as filters, constantly sampling peripheral cues. This is facilitated by the conduit network, a tubular structure of aligned extracellular matrix (ECM) fibrils ensheathed by fibroblastic reticular cells (FRCs). LNs undergo rapid 3- to 5-fold expansion during adaptive immune responses, but these ECM-rich structures are not permanently damaged. Whether conduit flow or filtering function is affected during LN expansion is unknown. Here, we show that conduits are partially disrupted during acute LN expansion, but FRC-FRC contacts remain connected. We reveal that polarized FRCs deposit ECM basolaterally using LL5-ß and that ECM production is regulated at transcriptional and secretory levels by the C-type lectin CLEC-2, expressed by dendritic cells. Inflamed LNs maintain conduit size exclusion, and flow is disrupted but persists, indicating the robustness of this structure despite rapid tissue expansion. We show how dynamic communication between peripheral tissues and LNs provides a mechanism to prevent inflammation-induced fibrosis in lymphoid tissue.


Subject(s)
Extracellular Matrix/immunology , Fibroblasts/immunology , Lymph Nodes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL