Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cells ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38727271

ABSTRACT

Vascular smooth muscle cells (VSMCs) play a key role in aortic aneurysm formation. Bone morphogenetic proteins (BMPs) have been implicated as important regulators of VSMC phenotype, and dysregulation of the BMP pathway has been shown to be associated with vascular diseases. The aim of this study was to investigate for the first time the effects of BMP-4 on the VSMC phenotype and to understand its role in the development of thoracic aortic aneurysms (TAAs). Using the angiotensin II (AngII) osmotic pump model in mice, aortas from mice with VSMC-specific BMP-4 deficiency showed changes similar to AngII-infused aortas, characterised by a loss of contractile markers, increased fibrosis, and activation of matrix metalloproteinase 9. When BMP-4 deficiency was combined with AngII infusion, there was a significantly higher rate of apoptosis and aortic dilatation. In vitro, VSMCs with mRNA silencing of BMP-4 displayed a dedifferentiated phenotype with activated canonical BMP signalling. In contrast, BMP-2-deficient VSMCs exhibited the opposite phenotype. The compensatory regulation between BMP-2 and BMP-4, with BMP-4 promoting the contractile phenotype, appeared to be independent of the canonical signalling pathway. Taken together, these results demonstrate the impact of VSMC-specific BMP-4 deficiency on TAA development.


Subject(s)
Angiotensin II , Aortic Aneurysm, Thoracic , Bone Morphogenetic Protein 2 , Bone Morphogenetic Protein 4 , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phenotype , Animals , Bone Morphogenetic Protein 4/metabolism , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/pathology , Aortic Aneurysm, Thoracic/genetics , Mice , Bone Morphogenetic Protein 2/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Angiotensin II/pharmacology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Signal Transduction , Mice, Inbred C57BL , Male , Apoptosis/drug effects , Disease Models, Animal
2.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36902380

ABSTRACT

Dedifferentiated vascular smooth muscle cells (vSMCs) play an essential role in neointima formation, and we now aim to investigate the role of the bone morphogenetic protein (BMP) modulator BMPER (BMP endothelial cell precursor-derived regulator) in neointima formation. To assess BMPER expression in arterial restenosis, we used a mouse carotid ligation model with perivascular cuff placement. Overall BMPER expression after vessel injury was increased; however, expression in the tunica media was decreased compared to untreated control. Consistently, BMPER expression was decreased in proliferative, dedifferentiated vSMC in vitro. C57BL/6_Bmper+/- mice displayed increased neointima formation 21 days after carotid ligation and enhanced expression of Col3A1, MMP2, and MMP9. Silencing of BMPER increased the proliferation and migration capacity of primary vSMCs, as well as reduced contractibility and expression of contractile markers, whereas stimulation with recombinant BMPER protein had the opposite effect. Mechanistically, we showed that BMPER binds insulin-like growth factor-binding protein 4 (IGFBP4), resulting in the modulation of IGF signaling. Furthermore, perivascular application of recombinant BMPER protein prevented neointima formation and ECM deposition in C57BL/6N mice after carotid ligation. Our data demonstrate that BMPER stimulation causes a contractile vSMC phenotype and suggest that BMPER has the potential for a future therapeutic agent in occlusive cardiovascular diseases.


Subject(s)
Carrier Proteins , Neointima , Vascular Remodeling , Animals , Mice , Bone Morphogenetic Proteins/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Phenotype , Carrier Proteins/metabolism
3.
FASEB J ; 35(11): e21956, 2021 11.
Article in English | MEDLINE | ID: mdl-34605573

ABSTRACT

MicroRNAs are key regulators of the cardiac response to injury. MiR-100 has recently been suggested to be involved in different forms of heart failure, but functional studies are lacking. In the present study, we examined the impact of transgenic miR-100 overexpression on cardiac structure and function during physiological aging and pathological pressure-overload-induced heart failure in mice after transverse aortic constriction surgery. MiR-100 was moderately upregulated after induction of pressure overload in mice. While in our transgenic model the cardiomyocyte-specific overexpression of miR-100 did not result in an obvious cardiac phenotype in unchallenged mice, the transgenic mouse strain exhibited less left ventricular dilatation and a higher ejection fraction than wildtype animals, demonstrating an attenuation of maladaptive cardiac remodeling by miR-100. Cardiac transcriptome analysis identified a repression of several regulatory genes related to cardiac metabolism, lipid peroxidation, and production of reactive oxygen species (ROS) by miR-100 overexpression, possibly mediating the observed functional effects. While the modulation of ROS-production seemed to be indirectly affected by miR-100 via Alox5-and Nox4-downregulation, we demonstrated that miR-100 induced a direct repression of the scavenger protein CD36 in murine hearts resulting in a decreased uptake of long-chain fatty acids and an alteration of mitochondrial respiratory function with an enhanced glycolytic state. In summary, we identified miR-100 as a modulator of cardiac metabolism and ROS production without an apparent cardiac phenotype at baseline but a protective effect under conditions of pressure-overload-induced cardiac stress, providing new insight into the mechanisms of heart failure.


Subject(s)
CD36 Antigens/metabolism , Heart Failure/metabolism , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , NADPH Oxidase 4/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , Animals , CD36 Antigens/genetics , Disease Models, Animal , Fatty Acids/metabolism , HEK293 Cells , Heart Failure/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/genetics , NADPH Oxidase 4/genetics , Rats , Stroke Volume/genetics , Transfection , Ventricular Remodeling/genetics
4.
Mol Med ; 27(1): 101, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34488621

ABSTRACT

BACKGROUND: Diet-induced obesity can result in the development of a diverse spectrum of cardiovascular and metabolic diseases, including type 2 diabetes, dyslipidemia, non-alcoholic liver steatosis and atherosclerotic disease. MicroRNAs have been described to be important regulators of metabolism and disease development. METHODS: In the current study, we investigated the effects of ubiquitous miR-100 overexpression on weight gain and the metabolic phenotype in a newly generated transgenic mouse strain under normal chow and high fat diet and used microarray expression analysis to identify new potential target genes of miR-100. RESULTS: While transgenic overexpression of miR-100 did not significantly affect weight and metabolism under a normal diet, miR-100 overexpressing mice showed a reduced weight gain under a high fat diet compared to wildtype mice, despite an equal calorie intake. This was accompanied by less visceral and subcutaneous fat development and lover serum LDL cholesterol. In addition, transgenic miR-100 mice were more glucose tolerant and insulin sensitive and demonstrated increased energy expenditure under high fat diet feeding. A comprehensive gene expression profiling revealed the differential expression of several genes involved in lipid storage- and metabolism, among them CD36 and Cyp4A14. Our data showed a direct regulation of CD36 by miR-100, leading to a reduced fatty acid uptake in primary hepatocytes overexpressing miR-100 and the downregulation of several downstream mediators of lipid metabolism such as ACC1, FABP4, FAS and PPARγ in the liver. CONCLUSIONS: Our findings demonstrate a protective role of miR-100 in high fat diet induced metabolic syndrome and liver steatosis, partially mediated by the direct repression of CD36 and attenuation of hepatic lipid storage, implicating miR-100 as a possible therapeutic target in liver steatosis.


Subject(s)
Hypertriglyceridemia/etiology , Hypertriglyceridemia/metabolism , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , MicroRNAs/genetics , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , 3' Untranslated Regions , Animals , Biomarkers , Cells, Cultured , Diet, High-Fat/adverse effects , Disease Models, Animal , Disease Susceptibility , Gene Expression Regulation , Glucose/metabolism , Hepatocytes/metabolism , Insulin/metabolism , Lipid Metabolism , Male , Mice , Mice, Transgenic , Phenotype , RNA Interference , Transcriptome , Weight Gain
5.
Circ Res ; 122(3): 417-432, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29208678

ABSTRACT

RATIONALE: The interaction of circulating cells within the vascular wall is a critical event in chronic inflammatory processes, such as atherosclerosis, but the control of the vascular inflammatory state is still largely unclear. OBJECTIVE: This study was undertaken to characterize the function of the endothelial-enriched microRNA miR-100 during vascular inflammation and atherogenesis. METHODS AND RESULTS: Based on a transcriptome analysis of endothelial cells after miR-100 overexpression, we identified miR-100 as a potent suppressor of endothelial adhesion molecule expression, resulting in attenuated leukocyte-endothelial interaction in vitro and in vivo as shown by flow cytometry and intravital imaging. Mechanistically, miR-100 directly repressed several components of mammalian target of rapamycin complex 1-signaling, including mammalian target of rapamycin and raptor, which resulted in a stimulation of endothelial autophagy and attenuated nuclear factor κB signaling in vitro and in vivo. In a low-density lipoprotein receptor-deficient atherosclerotic mouse model, pharmacological inhibition of miR-100 resulted in enhanced plaque lesion formation and a higher macrophage content of the plaque, whereas a systemic miR-100 replacement therapy had protective effects and attenuated atherogenesis, resulting in a decrease of plaque area by 45%. Finally, analysis of miR-100 expression in >70 samples obtained during carotid endarterectomy revealed that local miR-100 expression was inversely correlated with inflammatory cell content in patients. CONCLUSIONS: In summary, we describe an anti-inflammatory function of miR-100 in the vascular response to injury and inflammation and identify an important novel modulator of mammalian target of rapamycin signaling and autophagy in the vascular system. Our findings of miR-100 as a potential protective anti-athero-miR suggest that the therapeutic replacement of this microRNA could be a potential strategy for the treatment of chronic inflammatory diseases, such as atherosclerosis, in the future.


Subject(s)
Atherosclerosis/pathology , Autophagy , Endothelial Cells/pathology , MicroRNAs/physiology , Vasculitis/pathology , Animals , Carotid Artery Diseases/metabolism , Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules/genetics , Cholesterol, LDL/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Leukocytes/physiology , Macrophages/physiology , Male , Mice , Mice, Inbred C57BL , Receptors, LDL/metabolism , Simvastatin/pharmacology , Specific Pathogen-Free Organisms , TOR Serine-Threonine Kinases/physiology , Transcriptome
6.
Thromb Haemost ; 117(4): 734-749, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28124060

ABSTRACT

MicroRNAs are small non-coding RNAs that negatively regulate posttranscriptional gene expression. Several microRNAs have been described to regulate the process of angiogenesis. Previously, we have shown that bone morphogenetic protein 4 (BMP4) increased the pro-angiogenic activity of endothelial cells. In this project, we now investigated how the pro-angiogenic BMP4 effect is mediated by microRNAs. First, we performed a microRNA array with BMP4-stimulated human umbilical vein endothelial cells (HUVECs). Among the top-regulated microRNAs, we detected a decreased expression of miR-494 and increased expression of miR-126-5p. Next, we analysed the canonical Smad and alternative signalling pathways, through which BMP4 would regulate miR-126-5p and miR-494 expression. Furthermore, the functional effect of miR-494 and miR-126-5p on endothelial cells was investigated. MicroRNA-494 overexpression decreased endothelial cell proliferation, migration and sprout formation. Consistently, miR-494 inhibition increased endothelial cell function. As potential miR-494 targets, bFGF and BMP endothelial cell precursor-derived regulator (BMPER) were identified and confirmed by western blot. Luciferase assays showed direct miR-494 binding in BMPER 3'UTR. In contrast, miR-126-5p overexpression increased pro-angiogenic endothelial cell behaviour and, accordingly, miR-126-5p inhibition decreased endothelial cell function. As a direct miR-126-5p target we identified the anti-angiogenic thrombospondin-1 which was confirmed by western blot analysis and luciferase assays. In the Matrigel plug assay application of antagomiR-494 increased endothelial cell ingrowth, whereas antagomiR-126-5p treatment decreased cell ingrowth in vivo. Taken together, through differential regulation of the anti-angiomiR-494 and the angiomiR-126-5p by BMP4 both microRNAs contribute to the pro-angiogenic BMP4 effect on endothelial cells.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Bone Morphogenetic Protein 4/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , MicroRNAs/metabolism , Neovascularization, Physiologic/drug effects , 3' Untranslated Regions , Animals , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/metabolism , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice , MicroRNAs/genetics , NIH 3T3 Cells , Signal Transduction/drug effects , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Transfection
7.
Vascul Pharmacol ; 84: 67-73, 2016 09.
Article in English | MEDLINE | ID: mdl-27401963

ABSTRACT

AIMS: The endothelium plays an important role during vascular inflammation. Previous data have demonstrated a high expression level of manganese-superoxide dismutase (MnSOD) in endothelial cells and suggested an important role of MnSOD in several cardiovascular diseases. Manganese (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) has been shown to mimic some of the effects of MnSOD and prevented the development of diabetes and obesity. However, its effect on vascular inflammation and the underlying mechanism is still unknown. METHODS AND RESULTS: Leukocyte adhesion was evaluated in-vivo and in-vitro using dynamic flow chamber and intravital microscopy in mice. Expression of adhesion molecules induced by TNFα and adhesion of leukocytes to the vessel wall were inhibited by MnTBAP. The anti-inflammatory effect of MnTBAP was partly mediated by up-regulation of the BMPR-II and Smad dependent pathway. Additionally, MnTBAP decelerated the turn-over of endogenous BMPR-II. CONCLUSION: Our data demonstrate that MnTBAP activates Smad signaling, preserves the turn-over of BMPR-II and elicits anti-inflammatory effects in endothelial cells, partly mediated by BMPR-II. This finding suggests a potential therapeutic impact of MnTBAP in the treatment of vascular inflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Metalloporphyrins/pharmacology , Vascular Diseases/pathology , Animals , Bone Morphogenetic Protein Receptors, Type II/genetics , Cell Adhesion , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells , Inflammation/pathology , Leukocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Signal Transduction/drug effects , Smad Proteins/metabolism , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
9.
Basic Res Cardiol ; 110(3): 32, 2015 May.
Article in English | MEDLINE | ID: mdl-25916938

ABSTRACT

The inflammatory sequelae of ischemia-reperfusion injury (IRI) are a major causal factor of tissue injury in various clinical settings. MicroRNAs (miRs) are short, non-coding RNAs, which regulate protein expression. Here, we investigated the role of miR-155 in IR-related tissue injury. Quantifying microRNA-expression levels in a human muscle tissue after IRI, we found miR-155 expression to be significantly increased and to correlate with the increased expression of TNF-α, IL-1ß, CD105, and Caspase3 as well as with leukocyte infiltration. The direct miR-155 target gene SOCS-1 was downregulated. In a mouse model of myocardial infarction, temporary LAD ligation and reperfusion injury resulted in a smaller area of necrosis in miR-155-/- animals compared to wildtype animals. To investigate the underlying mechanisms, we evaluated the effect of miR-155 on inflammatory cell recruitment by intravital microscopy and on the generation of reactive oxygen species (ROS) of macrophages. Our intravital imaging results demonstrated a decreased recruitment of inflammatory cells in miR-155-/- animals during IRI. The generation of ROS in leukocytic cells of miR-155-/- animals was also reduced. RNA silencing of the direct miR-155 target gene SOCS-1 abrogated this effect. In conclusion, miR-155 aggravates the inflammatory response, leukocyte infiltration and tissue damage in IRI via modulation of SOCS-1-dependent generation of ROS. MiR-155 is thus a potential target for the treatment or prevention of IRI.


Subject(s)
Chemotaxis, Leukocyte/physiology , Inflammation/metabolism , MicroRNAs/metabolism , Reperfusion Injury/metabolism , Transendothelial and Transepithelial Migration/physiology , Animals , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Humans , Inflammation/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction , Reperfusion Injury/genetics , Respiratory Burst/physiology , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins/metabolism , Transfection
10.
Circulation ; 131(18): 1575-89, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25850724

ABSTRACT

BACKGROUND: Adaptive neovascularization after arterial occlusion is an important compensatory mechanism in cardiovascular disease and includes both the remodeling of pre-existing vessels to collateral arteries (arteriogenesis) and angiogenic capillary growth. We now aimed to identify regulatory microRNAs involved in the modulation of neovascularization after femoral artery occlusion in mice. METHODS AND RESULTS: Using microRNA-transcriptome analysis, we identified miR-155 as a downregulated microRNA during hindlimb ischemia. Correspondingly, inhibition of miR-155 in endothelial cells had a stimulatory effect on proliferation and angiogenic tube formation via derepression of its direct target gene angiotensin II type 1 receptor. Surprisingly, miR-155-deficient mice showed an unexpected phenotype in vivo, with a strong reduction of blood flow recovery after femoral artery ligation (arteriogenesis) dependent on the attenuation of leukocyte-endothelial interaction and a reduction of proarteriogenic cytokine expression. Consistently, miR-155-deficient macrophages exhibit a specific alteration of the proarteriogenic cytokine expression profile, which is partly mediated by the direct miR-155 target gene SOCS-1. CONCLUSIONS: Our data demonstrate that miR-155 exerts an antiangiogenic but proarteriogenic function in the regulation of neovascularization via the suppression of divergent cell-specific target genes and that its expression in both endothelial and bone marrow-derived cells is essential for arteriogenesis in response to hindlimb ischemia in mice.


Subject(s)
Collateral Circulation/genetics , Hindlimb/blood supply , Ischemia/genetics , MicroRNAs/physiology , Neovascularization, Physiologic/genetics , Animals , Arteries/physiopathology , Base Sequence , Cell Movement , Cytokines/physiology , Down-Regulation , Endothelium, Vascular/physiopathology , Femoral Artery , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells , Intercellular Signaling Peptides and Proteins/physiology , Laser-Doppler Flowmetry , Leukocytes/physiology , Ligation , Macrophages/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Molecular Sequence Data , Receptor, Angiotensin, Type 1/biosynthesis , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/physiology , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...