Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (128)2017 10 20.
Article in English | MEDLINE | ID: mdl-29155706

ABSTRACT

Arteriovenious malformations (AVMs) are associated with significant morbidity and mortality, and have a rupture risk of ~3% per year. Treatment of AVMs must be tailored specifically to the lesion, with surgical resection being the gold standard for small, accessible lesions. Pre-operative embolization of AVMs can reduce nidal blood flow and remove high-risk AVM features such as intranidal or venous aneurysms, thereby simplifying a challenging neurosurgical procedure. Herein, we describe our approach for the staged endovascular embolization and open resection of AVMs, and highlight the advantages of having a comprehensively trained neurovascular surgeon leading a multi-disciplinary clinical team. This includes planning the craniotomy and resection to immediately follow the final embolization stage, thereby using a single session of anesthesia for aggressive embolization, and rapid resection. Finally, we provide a representative case of a 22-year-old female with an unruptured right frontal AVM diagnosed during a seizure workup, who was successfully treated via staged embolizations followed by open surgical resection.


Subject(s)
Embolization, Therapeutic/methods , Intracranial Arteriovenous Malformations/surgery , Neurosurgical Procedures/methods , Female , Humans , Intracranial Arteriovenous Malformations/pathology , Treatment Outcome , Young Adult
2.
Stroke ; 46(4): 1099-106, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25712942

ABSTRACT

BACKGROUND AND PURPOSE: Endovascular thrombectomy has shown promise for the treatment of acute strokes resulting from large-vessel occlusion. Reperfusion-related injury may contribute to the observed decoupling of angiographic and clinical outcomes. Iatrogenic disruption of the endothelium during thrombectomy is potentially a key mediator of this process that requires further study. METHODS: An in vitro live-cell platform was developed to study the effect of various commercially available endovascular devices on the endothelium. In vivo validation was performed using porcine subjects. RESULTS: This novel in vitro platform permitted high-resolution quantification and characterization of the pattern and timing of endothelial-cell injury among endovascular thrombectomy devices and vessel diameters. Thrombectomy devices displayed heterogeneous effects on the endothelium; the device performance assessed in vitro was substantiated by in vivo findings. CONCLUSIONS: In vitro live-cell artificial vessel modeling enables a detailed study of the endothelium after thrombectomy and may contribute to future device design. Large animal studies confirm the relevance of this in vitro system to investigate endothelial physiology. This artificial vessel model may represent a practical, scalable, and physiologically relevant system to assess new endovascular technologies.


Subject(s)
Endothelium, Vascular/injuries , Mechanical Thrombolysis , Stroke/therapy , Animals , Disease Models, Animal , In Vitro Techniques , Mechanical Thrombolysis/adverse effects , Mechanical Thrombolysis/instrumentation , Mechanical Thrombolysis/standards , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...