Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 24(12): 6112-6127, 2022 12.
Article in English | MEDLINE | ID: mdl-36222141

ABSTRACT

Saline springs within the Illinois Basin result from the discharge of deep-seated evaporated seawater (brine) and likely contain diverse and complex microbial communities that are poorly understood. In this study, seven saline/mineral springs with different geochemical characteristics and salinity origins were investigated using geochemical and molecular microbiological analyses to reveal the composition of microbial communities inhabiting springs and their key controlling factors. The 16S rRNA sequencing results demonstrated that each spring harbours a unique microbial community influenced by its geochemical properties and subsurface conditions. The microbial communities in springs that originated from Cambrian/Ordovician strata, which are deep confined units that have limited recharge from overlying formations, share a greater similarity in community composition and have a higher species richness and more overlapped taxa than those that originated from shallower Pennsylvanian strata, which are subject to extensive regional surface and groundwater recharge. The microbial distribution along the spring flow paths at the surface indicates that 59.8%-94.2% of total sequences in sedimentary samples originated from spring water, highlighting the role of springs in influencing microbiota in the immediate terrestrial environment. The results indicate that the springs introduce microbiota with a high biodiversity into surface terrestrial or aquatic ecosystems, potentially affecting microbial reservoirs in downstream ecosystems.


Subject(s)
Groundwater , Microbiota , RNA, Ribosomal, 16S/genetics , Salinity , Microbiota/genetics , Groundwater/microbiology , Seawater/microbiology
2.
Sci Rep ; 9(1): 13484, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31530884

ABSTRACT

Natural microbial communities consist of a limited number of abundant species and an extraordinarily diverse population of rare species referred to as the rare biosphere. Recent studies have revealed that the rare biosphere is not merely an inactive dormant population but may play substantial functional roles in the ecosystem. However, structure, activity and community assembly processes of the rare biosphere are poorly understood. In this study, we evaluated the present and living microbial community structures including rare populations in an aquifer ecosystem, the Mahomet Aquifer, USA, by both 16S rDNA and rRNA amplicon deep sequencing. The 13 groundwater samples formed three distinct groups based on the "entire" community structure, and the same grouping was obtained when focusing on the "rare" subcommunities (<0.1% of total abundance), while the "abundant" subcommunities (>1.0%) gave a different grouping. In the correlation analyses, the observed grouping pattern is associated with several geochemical factors, and structures of not only the entire community but also the rare subcommunity are correlated with geochemical profiles in the aquifer ecosystem. Our findings first indicate that the living rare biosphere in the aquifer system has the metabolic potential to adapt to local geochemical factors which dictate the community assembly processes.

3.
Ground Water ; 57(2): 189-196, 2019 03.
Article in English | MEDLINE | ID: mdl-30675731

ABSTRACT

Groundwater in karst aquifers constitutes about 25% of drinking water sources globally. Karst aquifers are open systems, susceptible to contamination by surface-borne pollutants. In this study, springs and wells from two karst aquifers in Illinois, USA, were found to contain microplastics and other anthropogenic contaminants. All microplastics were fibers, with a maximum concentration of 15.2 particles/L. The presence of microplastic was consistent with other parameters, including phosphate, chloride and triclosan, suggesting septic effluent as a source. More studies are needed on microplastic sources, abundance, and impacts on karst ecosystems.


Subject(s)
Groundwater , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Illinois , Plastics
4.
Ground Water ; 56(1): 32-45, 2018 01.
Article in English | MEDLINE | ID: mdl-28715079

ABSTRACT

The conservative nature of chloride (Cl- ) in groundwater and the abundance of geochemical data from various sources (both published and unpublished) provided a means of developing, for the first time, a representation of the hydrogeology of the Illinois Basin on a basin-wide scale. The creation of Cl- isocons superimposed on plan view maps of selected formations and on cross sections across the Illinois Basin yielded a conceptual model on a basin-wide scale of recharge into, groundwater flow within and through the Illinois Basin. The maps and cross sections reveal the infiltration and movement of freshwater into the basin and dilution of brines within various geologic strata occurring at basin margins and along geologic structures. Cross-formational movement of brines is also seen in the northern part of the basin. The maps and cross sections also show barriers to groundwater movement created by aquitards resulting in areas of apparent isolation/stagnation of concentrated brines within the basin. The distribution of Cl- within the Illinois Basin suggests that the current chemical composition of groundwater and distribution of brines within the basin is dependent on five parameters: (1) presence of bedrock exposures along basin margins; (2) permeability of geologic strata and their distribution relative to one another; (3) presence or absence of major geologic structures; (4) intersection of major waterways with geologic structures, basin margins, and permeable bedrock exposures; and (5) isolation of brines within the basin due to aquitards, inhomogeneous permeability, and, in the case of the deepest part of the basin, brine density effects.


Subject(s)
Groundwater , Water Movements , Fresh Water , Geology , Illinois , Midwestern United States
5.
Sci Total Environ ; 490: 1082-90, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24922611

ABSTRACT

Fecal contamination in Midwestern karst regions was evaluated by simultaneously measuring traditional bacterial indicators (coliforms and Escherichia coli), Bacteroidales-based biomarkers, and environmental variables. Water samples from springs and wells were collected from karst regions in Illinois (IL), Wisconsin (WI), Kentucky (KY), and Missouri (MO). Quantitative PCR (Q-PCR) with seven primer sets targeting different members of Bacteroidales was used to determine the origin of fecal contamination (i.e., from human waste, livestock waste, or both). Most samples were contaminated by both human and animal waste, with a few samples showing pollution solely by one or the other. Spring water tended to have higher levels of contamination than well water, and higher concentrations of fecal biomarkers were detected in urban springs compared to rural spring systems. However, there were discrepancies on contamination profile determined by Bacteroidales-based biomarkers and by traditional bacterial indicators. Among all the environmental parameters examined, E. coli, sulfate, total dissolved solids (TDS), and silicon were significantly correlated (p<0.05) with the level of Bacteroidales-based fecal indicators. A rapid screening method using total nitrogen (TN) and chloride (Cl(-)) concentrations to determine fecal contamination was shown to be effective and correlated well with Bacteroidales-based MST. The results suggest that human and livestock feces co-contaminated a large portion of karst groundwater systems in Midwestern regions, and the inclusion of traditional bacterial indicators, environmental variables, and Bacteroidales-based MST is an effective approach for identifying fecal contamination in karst regions.


Subject(s)
Bacteroidetes/genetics , Groundwater/microbiology , Water Microbiology , Water Pollution/analysis , Bacteroidetes/growth & development , Biomarkers/analysis , Environmental Monitoring/methods , Feces/microbiology , Genetic Markers , Illinois
6.
Ground Water ; 44(4): 494, 2006.
Article in English | MEDLINE | ID: mdl-16857020

Subject(s)
Water
7.
J Environ Qual ; 35(2): 495-504, 2006.
Article in English | MEDLINE | ID: mdl-16455850

ABSTRACT

Anthropogenic nitrate (NO3-) within the Mississippi-Atchafalaya River basin and discharge to the Gulf of Mexico has been linked to serious environmental problems. The sources of this NO3- have been estimated by others using mass balance methods; however, there is considerable uncertainty in these estimates. Part of the uncertainty is the degree of denitrification that the NO3- has undergone. The isotopic composition of NO3- in the Mississippi River adjacent to Illinois and tile drain (subsurface drain) discharge in agricultural areas of east-central Illinois was examined using N and O isotopes to help identify the major sources of NO3- and assess the degree of denitrification in the samples. The isotopic evidence suggests that most of the NO3- in the river is primarily derived from synthetic fertilizers and soil organic N, which is consistent with published estimates of N inputs to the Mississippi River. The 1:2 relationship between delta18O and delta15N also indicate that, depending on sample location and season, NO3- in the river and tile drains has undergone significant denitrification, ranging from about 0 to 55%. The majority of the denitrification appears to have occurred before discharge into the Mississippi River.


Subject(s)
Nitrates/analysis , Rivers , Water Pollutants, Chemical/analysis , Environmental Monitoring , Illinois , Nitrogen Isotopes , Oxygen Isotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...