Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Obes (Lond) ; 42(4): 775-784, 2018 04.
Article in English | MEDLINE | ID: mdl-28990592

ABSTRACT

BACKGROUND: Clinical recommendations to limit gestational weight gain (GWG) imply high GWG is causally related to adverse outcomes in mother or offspring, but GWG is the sum of several inter-related complex phenotypes (maternal fat deposition and vascular expansion, placenta, amniotic fluid and fetal growth). Understanding the genetic contribution to GWG could help clarify the potential effect of its different components on maternal and offspring health. Here we explore the genetic contribution to total, early and late GWG. PARTICIPANTS AND METHODS: A genome-wide association study was used to identify maternal and fetal variants contributing to GWG in up to 10 543 mothers and 16 317 offspring of European origin, with replication in 10 660 mothers and 7561 offspring. Additional analyses determined the proportion of variability in GWG from maternal and fetal common genetic variants and the overlap of established genome-wide significant variants for phenotypes relevant to GWG (for example, maternal body mass index (BMI) and glucose, birth weight). RESULTS: Approximately 20% of the variability in GWG was tagged by common maternal genetic variants, and the fetal genome made a surprisingly minor contribution to explain variation in GWG. Variants near the pregnancy-specific beta-1 glycoprotein 5 (PSG5) gene reached genome-wide significance (P=1.71 × 10-8) for total GWG in the offspring genome, but did not replicate. Some established variants associated with increased BMI, fasting glucose and type 2 diabetes were associated with lower early, and higher later GWG. Maternal variants related to higher systolic blood pressure were related to lower late GWG. Established maternal and fetal birth weight variants were largely unrelated to GWG. CONCLUSIONS: We found a modest contribution of maternal common variants to GWG and some overlap of maternal BMI, glucose and type 2 diabetes variants with GWG. These findings suggest that associations between GWG and later offspring/maternal outcomes may be due to the relationship of maternal BMI and diabetes with GWG.


Subject(s)
Fetus/physiology , Gestational Weight Gain/genetics , Pregnancy/genetics , Female , Genome-Wide Association Study , Gestational Weight Gain/physiology , Humans , Pregnancy/physiology , Pregnancy/statistics & numerical data
2.
Diabetologia ; 56(6): 1291-305, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23532257

ABSTRACT

AIMS/HYPOTHESIS: Most genetic variants identified for type 2 diabetes have been discovered in European populations. We performed genome-wide association studies (GWAS) in a Chinese population with the aim of identifying novel variants for type 2 diabetes in Asians. METHODS: We performed a meta-analysis of three GWAS comprising 684 patients with type 2 diabetes and 955 controls of Southern Han Chinese descent. We followed up the top signals in two independent Southern Han Chinese cohorts (totalling 10,383 cases and 6,974 controls), and performed in silico replication in multiple populations. RESULTS: We identified CDKN2A/B and four novel type 2 diabetes association signals with p < 1 × 10(-5) from the meta-analysis. Thirteen variants within these four loci were followed up in two independent Chinese cohorts, and rs10229583 at 7q32 was found to be associated with type 2 diabetes in a combined analysis of 11,067 cases and 7,929 controls (p meta = 2.6 × 10(-8); OR [95% CI] 1.18 [1.11, 1.25]). In silico replication revealed consistent associations across multiethnic groups, including five East Asian populations (p meta = 2.3 × 10(-10)) and a population of European descent (p = 8.6 × 10(-3)). The rs10229583 risk variant was associated with elevated fasting plasma glucose, impaired beta cell function in controls, and an earlier age at diagnosis for the cases. The novel variant lies within an islet-selective cluster of open regulatory elements. There was significant heterogeneity of effect between Han Chinese and individuals of European descent, Malaysians and Indians. CONCLUSIONS/INTERPRETATION: Our study identifies rs10229583 near PAX4 as a novel locus for type 2 diabetes in Chinese and other populations and provides new insights into the pathogenesis of type 2 diabetes.


Subject(s)
Chromosomes, Human, Pair 7 , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Homeodomain Proteins/genetics , Paired Box Transcription Factors/genetics , Adult , Aged , Asian People , China , Diabetes Mellitus, Type 2/ethnology , Female , Genetic Markers , Genetic Variation , Genotype , Hong Kong , Humans , Insulin-Secreting Cells/cytology , Japan , Male , Middle Aged , Singapore
3.
Arthritis Rheum ; 63(6): 1522-6, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21370227

ABSTRACT

OBJECTIVE: With the exception of the major histocompatibility complex (MHC) and STAT4, no other rheumatoid arthritis (RA) linkage peak has been successfully fine-mapped to date. This apparent failure to identify association under peaks of linkage could be ascribed to the examination of common variation, when linkage is likely to be driven by rare variants. The purpose of this study was to investigate the overlap between genome-wide rare variant RA association signals observed in the Wellcome Trust Case Control Consortium (WTCCC) study and 11 replicating RA linkage peaks, defined as regions with evidence for linkage in >1 study. METHODS: The WTCCC data set contained 40,482 variants with minor allele frequency of ≤0.05 in 1,860 RA patients and 2,938 controls. Genotypes of all rare variants within a given gene region were collapsed into a single locus and a global P value was calculated per gene. RESULTS: The distribution of rare variant signals (association P≤10(-5)) was found to differ significantly between regions with and without linkage evidence (P=2×10(-17) by Fisher's exact test). No significant difference was observed after data from the MHC region were removed or when the effect of the HLA-DRB1 locus was accounted for. CONCLUSION: The results suggest that rare variant association signals are significantly overrepresented under linkage peaks in RA, but the effect is driven by the MHC. This is the first study to examine the overlap between linkage peaks and rare variant association signals genome-wide in a complex disease.


Subject(s)
Arthritis, Rheumatoid/genetics , Genetic Linkage , Genome-Wide Association Study , Adult , Case-Control Studies , Cohort Studies , Genetic Loci , Genetic Predisposition to Disease , Genotype , HLA-DR Antigens/genetics , HLA-DRB1 Chains , Humans , Major Histocompatibility Complex/genetics , Middle Aged , Polymorphism, Single Nucleotide , United Kingdom/epidemiology , Young Adult
4.
Ann Rheum Dis ; 70(5): 864-7, 2011 May.
Article in English | MEDLINE | ID: mdl-21177295

ABSTRACT

OBJECTIVES: The genetic aetiology of osteoarthritis has not yet been elucidated. To enable a well-powered genome-wide association study (GWAS) for osteoarthritis, the authors have formed the arcOGEN Consortium, a UK-wide collaborative effort aiming to scan genome-wide over 7500 osteoarthritis cases in a two-stage genome-wide association scan. Here the authors report the findings of the stage 1 interim analysis. METHODS: The authors have performed a genome-wide association scan for knee and hip osteoarthritis in 3177 cases and 4894 population-based controls from the UK. Replication of promising signals was carried out in silico in five further scans (44,449 individuals), and de novo in 14 534 independent samples, all of European descent. RESULTS: None of the association signals the authors identified reach genome-wide levels of statistical significance, therefore stressing the need for corroboration in sample sets of a larger size. Application of analytical approaches to examine the allelic architecture of disease to the stage 1 genome-wide association scan data suggests that osteoarthritis is a highly polygenic disease with multiple risk variants conferring small effects. CONCLUSIONS: Identifying loci conferring susceptibility to osteoarthritis will require large-scale sample sizes and well-defined phenotypes to minimise heterogeneity.


Subject(s)
Osteoarthritis, Hip/genetics , Osteoarthritis, Knee/genetics , Case-Control Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Multifactorial Inheritance , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...