Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 23(2): 259-266, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33222376

ABSTRACT

Oncidiinae is one of the most important subtribes among the Neotropical orchids, with an enormous diversity of floral morphology and secretory structures. This subtribe attracts a diverse array of pollinators which explore a variety of floral resources of its flowers. In this paper we provide a detailed investigation of the floral anatomy of 32 species of micro Oncidiinae. We applied histochemical tests in order to determine the diversity of the glands and rewards. The diversity of secretory flower structures and rewards was related to the group of pollinators known for this subtribe. We verified that half of the species (16 species, 50%) secrete oil as a resource, being pollinated by female of solitary bees. Species of some distinct nectar-secreting genera (four species, 12.5%) are pollinated by a range of nectar-searching animals. Species of the genus Notylia (four species, 12.5%) release floral perfumes that reward male Euglossini bees. Most of the investigated species (six species, 18.75%) possess osmophores that are involved in pollinator attraction. Two species of Capanemia (6.25%) do not offer any floral reward, suggesting that pollination by food deception is involved. There are strong variations in the anatomy of reward-producing structures and resources in Oncidiinae. The diversity of floral rewards affects the range of pollinators, which are related to the diversification of this subtribe throughout the Neotropics. The understanding of relationships between Oncidiinae species and their pollinators is crucial to our knowledge of the evolution of pollination systems in this huge plant family represented by the orchids.


Subject(s)
Bees , Flowers , Orchidaceae , Pollination , Animals , Female , Flowers/anatomy & histology , Host-Parasite Interactions/physiology , Male , Orchidaceae/anatomy & histology , Orchidaceae/physiology , Perfume , Plant Nectar , Plant Oils , Species Specificity
2.
Plant Biol (Stuttg) ; 19(2): 147-155, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27860055

ABSTRACT

The incredible pollination mechanisms displayed by orchid flowers has inspired biologists over the centuries. Based on the intriguing flower structures, the relationship among orchid species and their pollinators has been frequently regarded as very specialised. Given that visits on flowers pollinated by oil-collecting bees are regularly rare, and in Oncidiinae the flowers frequently attractexclusively species that act as effective pollinators, the comparative reproductive biology and pollinator specificity of two sympatric Gomesa (G. varicosa and G. montana; Oncidiinae) were analysedbased on records of floral morphology, production of floral rewards, pollinators and pollination mechanisms. Furthermore, experimental pollinations were carried out in order to examine the breeding systems. The results have show that in the studied population, both Gomesa are visited by several bee species, but these orchids present a specific pollination system.Pollinaria are deposited on the head of Centridini (G. varicosa and G. montana) and Epicharitini (G. varicosa) bees when landed on the central callus of the labellumto collect lipoidal substances produced by glandular elaiophores on lateral lobes of the labellum. Both species are dependent on a biotic pollen vector to set fruits. Gomesamontana is completely self-incompatible, while G. varicosa is partially self-compatible. Our results indicate that although the occurrence of self-sterile species seems to be common in Oncidiinae, in partially self-incompatible species, as is the case of G. varicosa, self-compatibility has been considered as an important factor favouring reproductive assurance in populations with low visitation frequencies, despite occurrence of inbreeding depression.


Subject(s)
Bees/physiology , Orchidaceae/physiology , Pollination , Animals , Breeding , Flowers/anatomy & histology , Flowers/chemistry , Flowers/physiology , Fruit/anatomy & histology , Fruit/chemistry , Fruit/physiology , Orchidaceae/anatomy & histology , Orchidaceae/chemistry , Pollen/anatomy & histology , Pollen/chemistry , Pollen/physiology , Reproduction , Sympatry
3.
Plant Biol (Stuttg) ; 16(6): 1104-13, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24739080

ABSTRACT

Vanilloideae comprises 15 genera distributed worldwide, among which are Vanilla and Epistephium (tribe Vanilleae). Based on field and laboratory investigations, the pollination biology of V. dubia and E. sclerophyllum was analysed. The former was surveyed in a semi-deciduous mesophytic forest at the biological reserve of Serra do Japi and in a marshy forest at the city of Pradópolis, southeastern Brazil. The latter was examined in rocky outcrop vegetation in the Chapada Diamantina, northeastern Brazil. In the studied populations, the tubular flowers of V. dubia and E. sclerophyllum were pollinated by bees. Pollen was deposited on either their scutellum (V. dubia) or scutum (E. sclerophyllum). The mentum region of V. dubia is dry, whereas that of E. sclerophyllum presents a small quantity of dilute nectar. Flowers of E. sclerophyllum are scentless, while those of V. dubia are odoriferous. Although V. dubia is self-compatible, it needs a pollinator to produce fruit. In contrast, E. sclerophyllum sets fruit through spontaneous self-pollination, but biotic pollination also occurs. Both species are primarily adapted to pollination by euglossine bees. Pollination by Euglossina seems to have occurred at least twice during the evolution of Vanilleae. Furthermore, shifts between rewarding and reward-free flowers and between autogamous and allogamous species have been reported among vanillas.


Subject(s)
Bees/physiology , Flowers/physiology , Orchidaceae/physiology , Pollination/physiology , Animals , Fruit/physiology
4.
Plant Biol (Stuttg) ; 13(4): 576-81, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21668598

ABSTRACT

The reproductive biology, reward production and pollination mechanism of Trichocentrum pumilum were studied in a gallery forest in the interior of the State of São Paulo, southeast Brazil. The floral visitors and pollination mechanism were recorded, and experimental pollinations were carried out in order to determine the breeding system of this species. Trichocentrum pumilum blooms in spring. Each paniculate inflorescence bears an average of 85 flowers that present a central yellow callus and finger-like trichomes on the lateral lobes of the lip. A lipoidal substance is produced and stored among these trichomes. In the studied population, T. pumilum is exclusively visited and pollinated by two bee species (Tetrapedia diversipes and Lophopedia nigrispinis). Pollinaria are deposited on mouthparts of bees during collection of the lipoidal substance from the lateral lobes of the labellum. Trichocentrum pumilum is self-incompatible and pollinator-limited. Natural fruit set was low (9%, compared to 45% in experimentally cross-pollinated flowers). Potentially viable seed exceed 97% in fruits obtained through cross-pollination and in natural conditions (open pollination).


Subject(s)
Bees , Flowers/chemistry , Orchidaceae/physiology , Plant Oils , Pollination , Seeds , Animals , Bees/classification , Brazil , Fruit , Orchidaceae/chemistry , Reproduction , Species Specificity
5.
Plant Biol (Stuttg) ; 10(5): 650-9, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18761503

ABSTRACT

The genus Cyrtopodium comprises about 42 species distributed from southern Florida to northern Argentina. Cyrtopodium polyphyllum occurs on rocks or in sandy soils, in restinga vegetation along the Brazilian coast. It flowers during the wet season and its inflorescences produce a high number of resupinate yellow flowers. Cyrtopodium polyphyllum offers no rewards to its pollinators, but mimics the yellow, reward-producing flowers of nearby growing Stigmaphyllon arenicola (oil) and Crotalaria vitellina (nectar) individuals. Several species of bee visit flowers of C. polyphyllum, but only two species of Centris (Centris tarsata and Centris labrosa) act as pollinators. Visits to flowers of C. polyphyllum were scarce and, as a consequence, low-fruit set was recorded under natural conditions. Such low-fruit production contrasts with the number of fruits each plant bears after manual pollination, suggesting deficient pollen transfer among plants. C. polyphyllum is self-compatible and has a high-fruit set in both manual self- and cross-pollinated flowers. Furthermore, fruits (2%) are formed by self-pollination assisted by rain. This facultative self-pollination mechanism is an important strategy to provide reproductive assurance to C. polyphyllum as rainfall restricts the foraging activity of its pollinating bees. Fruits derived from treatments and under natural conditions had a similar high rate of potentially viable seed. Moreover, these seeds had a low polyembryony rate, which did not exceed 5%. C. polyphyllum acts by deceit involving optical signals and exploits other yellow-flowered species within its habitat by attracting their pollinators. The low capsule production under natural conditions was expected, but its reproductive success is assured through self-pollination by rain and high seed viability.


Subject(s)
Bees , Behavior, Animal , Flowers/physiology , Orchidaceae/physiology , Pollination , Adaptation, Biological , Animals , Fruit/physiology , Seeds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...