Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Int J Mol Sci ; 24(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36982947

ABSTRACT

Inhaled nitric oxide (iNO) is a therapy used in neonates with pulmonary hypertension. Some evidence of its neuroprotective properties has been reported in both mature and immature brains subjected to injury. NO is a key mediator of the VEGF pathway, and angiogenesis may be involved in the reduced vulnerability to injury of white matter and the cortex conferred by iNO. Here, we report the effect of iNO on angiogenesis in the developing brain and its potential effectors. We found that iNO promotes angiogenesis in the developing white matter and cortex during a critical window in P14 rat pups. This shift in the developmental program of brain angiogenesis was not related to a regulation of NO synthases by exogenous NO exposure, nor the VEGF pathway or other angiogenic factors. The effects of iNO on brain angiogenesis were found to be mimicked by circulating nitrate/nitrite, suggesting that these carriers may play a role in transporting NO to the brain. Finally, our data show that the soluble guanylate cyclase/cGMP signaling pathway is likely to be involved in the pro-angiogenetic effect of iNO through thrombospondin-1, a glycoprotein of the extracellular matrix, inhibiting soluble guanylate cyclase through CD42 and CD36. In conclusion, this study provides new insights into the biological basis of the effect of iNO in the developing brain.


Subject(s)
Nitric Oxide , Rodentia , Animals , Rats , Nitric Oxide/metabolism , Animals, Newborn , Rodentia/metabolism , Soluble Guanylyl Cyclase/metabolism , Vascular Endothelial Growth Factor A/metabolism , Brain/metabolism , Administration, Inhalation
2.
Nutrients ; 13(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34835975

ABSTRACT

Microglial activation is a key modulator of brain vulnerability in response to intra-uterine growth restriction (IUGR). However, the consequences of IUGR on microglial development and the microglial proteome are still unknown. We used a model of IUGR induced by a gestational low-protein diet (LPD) in rats. Microglia, isolated from control and growth-restricted animals at P1 and P4, showed significant changes in the proteome between the two groups. The expression of protein sets associated with fetal growth, inflammation, and the immune response were significantly enriched in LPD microglia at P1 and P4. Interestingly, upregulation of protein sets associated with the oxidative stress response and reactive oxygen species production was observed at P4 but not P1. During development, inflammation-associated proteins were upregulated between P1 and P4 in both control and LPD microglia. By contrast, proteins associated with DNA repair and senescence pathways were upregulated in only LPD microglia. Similarly, protein sets involved in protein retrograde transport were significantly downregulated in only LPD microglia. Overall, these data demonstrate significant and multiple effects of LPD-induced IUGR on the developmental program of microglial cells, leading to an abnormal proteome within the first postnatal days.


Subject(s)
Fetal Growth Retardation/metabolism , Microglia/metabolism , Proteome/metabolism , Animals , Animals, Newborn , Body Weight , Cluster Analysis , Diet, Protein-Restricted , Inflammation/pathology , Oxidative Stress , Rats, Sprague-Dawley
3.
Cells ; 10(10)2021 10 15.
Article in English | MEDLINE | ID: mdl-34685745

ABSTRACT

Cerebral stroke, traumatic brain injury, and hypoxic ischemic encephalopathy are among the most frequently occurring brain injuries. A complex pathogenesis, characterized by a synergistic interaction between alterations of the cerebrovascular system, cell death, and inflammation, is at the basis of the brain damage that leads to behavioral and neurodevelopmental disabilities in affected subjects. Sildenafil is a selective inhibitor of the enzyme phosphodiesterase 5 (PDE5) that is able to cross the blood-brain barrier. Preclinical data suggest that sildenafil may be a good candidate for the prevention or repair of brain injury in both adults and neonates. The aim of this review is to summarize the evidence supporting the neuroprotective action of sildenafil and discuss the possible benefits of the association of sildenafil with current therapeutic strategies.


Subject(s)
Brain Injuries/drug therapy , Neuroprotection , Sildenafil Citrate/therapeutic use , Translational Research, Biomedical , Adult , Humans , Infant, Newborn , Neuroprotection/drug effects , Nitric Oxide/metabolism , Sex Characteristics , Sildenafil Citrate/pharmacology
4.
Front Neurol ; 12: 668877, 2021.
Article in English | MEDLINE | ID: mdl-34220677

ABSTRACT

Backgroud: Type-3 metabotropic glutamate (mGlu3) receptors are found in both neurons and glial cells and regulate synaptic transmission, astrocyte function, and microglial reactivity. Here we show that the genetic deletion of mGlu3 receptors amplifies ischemic brain damage and associated neuroinflammation in adult mice. An increased infarct size was observed in mGlu3-/- mice of both CD1 and C57Black strains 24 h following a permanent occlusion of the middle cerebral artery (MCA) as compared to their respective wild-type (mGlu3+/+ mice) counterparts. Increases in the expression of selected pro-inflammatory genes including those encoding interleukin-1ß, type-2 cycloxygenase, tumor necrosis factor-α, CD86, and interleukin-6 were more prominent in the peri-infarct region of mGlu3-/- mice. In contrast, the expression of two genes associated with the anti-inflammatory phenotype of microglia (those encoding the mannose-1-phosphate receptor and the α-subunit of interleukin-4 receptor) and the gene encoding the neuroprotective factor, glial cell line-derived neurotrophic factor, was enhanced in the peri-infarct region of wild-type mice, but not mGlu3-/- mice, following MCA occlusion. In C57Black mice, the genetic deletion of mGlu3 receptors worsened the defect in the paw placement test as assessed in the contralateral forepaw at short times (4 h) following MCA occlusion. These findings suggest that mGlu3 receptors are protective against ischemic brain damage and support the way to the use of selective mGlu3 receptor agonists or positive allosteric modulators in experimental animal models of ischemic stroke.

5.
Am J Physiol Lung Cell Mol Physiol ; 321(3): L545-L552, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34159801

ABSTRACT

Intrauterine growth restriction (IUGR) increases the risk of bronchopulmonary dysplasia (BPD), one of the major complications of prematurity. Antenatal low-protein diet (LPD) exposure in rats induces IUGR and mimics BPD-related alveolarization disorders. Peroxisome proliferator-activated receptor-γ (PPARγ) plays a key role in normal lung development and was found deregulated following LPD exposure. The objective of this article was to investigate the effects of nebulized curcumin, a natural PPARγ agonist, to prevent IUGR-related abnormal lung development. We studied rat pups antenatally exposed to an LPD or control diet (CTL) and treated with nebulized curcumin (50 mg/kg) or vehicle from postnatal (P) days 1 to 5. The primary readouts were lung morphometric analyses at P21. Immunohistochemistry (P21) and microarrays (P6 and P11) were compared within animals exposed to LPD versus controls, with and without curcumin treatment. Quantitative morphometric analyses revealed that LPD induced abnormal alveolarization as evidenced by a significant increase in mean linear intercept (MLI) observed in P21 LPD-exposed animals. Early curcumin treatment prevented this effect, and two-way ANOVA analysis demonstrated significant interaction between diet and curcumin both for MLI [F(1,39) = 12.67, P = 0.001] and radial alveolar count at P21 [F(1,40) = 6.065, P = 0.0182]. Immunohistochemistry for fatty acid binding protein 4 (FABP4), a major regulator of PPARγ pathway, showed a decreased FABP4+ alveolar cell density in LPD-exposed animals treated by curcumin. Transcriptomic analysis showed that early curcumin significantly prevented the activation of profibrotic pathways observed at P11 in LPD-exposed animals. Nebulized curcumin appears to be a promising strategy to prevent alveolarization disorders in IUGR rat pups, targeting pathways involved in lung development.


Subject(s)
Bronchopulmonary Dysplasia/prevention & control , Curcumin/pharmacology , Diet, Protein-Restricted/adverse effects , Pulmonary Alveoli/metabolism , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/etiology , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/pathology , Female , Fetal Growth Retardation/drug therapy , Fetal Growth Retardation/etiology , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/pathology , Male , Nebulizers and Vaporizers , PPAR gamma/agonists , PPAR gamma/metabolism , Pulmonary Alveoli/pathology , Rats , Rats, Sprague-Dawley
6.
J Neuroinflammation ; 18(1): 13, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407565

ABSTRACT

BACKGROUND: Perinatal inflammation is a key factor of brain vulnerability in neonates born preterm or with intra-uterine growth restriction (IUGR), two leading conditions associated with brain injury and responsible for neurocognitive and behavioral disorders. Systemic inflammation is recognized to activate microglia, known to be the critical modulators of brain vulnerability. Although some evidence supports a role for metabotropic glutamate receptor 3 (mGlu3 receptor) in modulation of neuroinflammation, its functions are still unknown in the developing microglia. METHODS: We used a double-hit rat model of perinatal brain injury induced by a gestational low-protein diet combined with interleukin-1ß injections (LPD/IL-1ß), mimicking both IUGR and prematurity-related inflammation. The effect of LPD/IL-1ß on mGlu3 receptor expression and the effect of mGlu3 receptor modulation on microglial reactivity were investigated using a combination of pharmacological, histological, and molecular and genetic approaches. RESULTS: Exposure to LPD/IL-1ß significantly downregulated Grm3 gene expression in the developing microglia. Both transcriptomic analyses and pharmacological modulation of mGlu3 receptor demonstrated its central role in the control of inflammation in resting and activated microglia. Microglia reactivity to inflammatory challenge induced by LPD/IL-1ß exposure was reduced by an mGlu3 receptor agonist. Conversely, both specific pharmacological blockade, siRNA knock-down, and genetic knock-out of mGlu3 receptors mimicked the pro-inflammatory phenotype observed in microglial cells exposed to LPD/IL-1ß. CONCLUSIONS: Overall, these data show that Grm3 plays a central role in the regulation of microglial reactivity in the immature brain. Selective pharmacological activation of mGlu3 receptors may prevent inflammatory-induced perinatal brain injury.


Subject(s)
Microglia/metabolism , Receptors, Metabotropic Glutamate/metabolism , Animals , Animals, Newborn , Brain Injuries/metabolism , Brain Injuries/pathology , Female , Gene Expression Profiling/methods , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/pathology , Pregnancy , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/antagonists & inhibitors
7.
Int J Mol Sci ; 21(18)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911782

ABSTRACT

The poly(ADP-ribose) polymerase (PARP) inhibitor PJ34 has been reported to improve endothelial dysfunction in the peripheral system. We addressed the role of PJ34 on the vascular tone and vasoreactivity during development in the mouse brain. Blood flows were measured in the basilar trunk using ultrasonography. Cerebral vasoreactivity or vasodilation reserve was estimated as a percentage increase in mean blood flow velocities (mBFV) recorded under normoxia-hypercapnia in control and after PJ34 administration. Non-selective and selective eNOS and nNOS inhibitors were used to evaluate the role of NO-pathway into the hemodynamic effects of PJ34. PJ34 increased mBFVs from 15.8 ± 1.6 to 19.1 ± 1.9 cm/s (p = 0.0043) in neonatal, from 14.6 ± 1.4 to 16.1 ± 0.9 cm/s (p = 0.0049) in adult, and from 15.7 ± 1.7 to 17.5 ± 2.0 cm/s (p = 0.0024) in aged mice 48 h after administration. These PJ34 values were similar to those measured in age-matched control mice under normoxia-hypercapnia. This recruitment was mediated through the activation of constitutive NO synthases in both the neonatal (38.2 ± 6.7 nmol/min/mg protein) and adult (31.5 ± 4.4 nmol/min/mg protein) brain, as compared to age-matched control brain (6.9 ± 0.4 and 6.3 ± 0.7 nmol/min/mg protein), respectively. In addition, quite selective eNOS inhibitor was able to inhibit the recruitment. PJ34 by itself is able to increase cerebral blood flow through the NO-pathway activation at least over 48 h after a single administration.


Subject(s)
Nitric Oxide/metabolism , Phenanthrenes/metabolism , Phenanthrenes/pharmacology , Age Factors , Animals , Animals, Newborn/metabolism , Brain/embryology , Brain/metabolism , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/physiology , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Vasodilator Agents/metabolism , Vasodilator Agents/pharmacology
8.
Sci Rep ; 10(1): 5003, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32193413

ABSTRACT

In-line filtration is increasingly used in critically-ill infants but its benefits, by preventing micro-particle infusion in very preterm neonates, remain to be demonstrated. We conducted a randomized controlled trial among very preterm infants allocated to receive either in-line filtration of all the intra-venous lines or standard care without filters. The primary outcome was differences greater than 20% in the median changes in pro-inflammatory cytokine serum concentrations measured at day 3 and day 8 (+/-1) using a Luminex multianalytic profiling technique. Major neonatal complications were analyzed as secondary predefined outcomes. We randomized 146 infants, assigned to filter (n = 73) or control (n = 73) group. Difference over 20% in pro-inflammatory cytokine concentration between day 3 and day 8 was not found statistically different between the two groups, both in intent-to-treat (with imputation) and per protocol (without imputation) analyses. The incidences of most of neonatal complications were found to be similar. Hence, this trial did not evidence a beneficial effect of in-line filtration in very preterm infants on the inflammatory response syndrome and neonatal morbidities. These data should be interpreted according to local standards in infusion preparation and central line management.


Subject(s)
Critical Illness/therapy , Filtration , Infant, Extremely Premature , Infusions, Intravenous/instrumentation , Infusions, Intravenous/methods , Vascular Access Devices , Cytokines/blood , Humans , Inflammation Mediators/blood , Infusions, Intravenous/adverse effects , Prognosis , Time Factors
9.
IEEE Trans Med Imaging ; 38(2): 383-393, 2019 02.
Article in English | MEDLINE | ID: mdl-30106718

ABSTRACT

In this paper, we consider dense volumetric modeling of moving samples such as body parts. Most dense modeling methods consider samples observed with a moving X-ray device and cannot easily handle moving samples. We propose instead a novel method to observe shape motion from a fixed X-ray device and to build dense in-depth attenuation information. This yields a low-cost, low-dose 3-D imaging solution, taking benefit of equipment widely available in clinical environments. Our first innovation is to combine a video-based surface motion capture system with a single low-cost/low-dose fixed planar X-ray device, in order to retrieve the sample motion and attenuation information with minimal radiation exposure. Our second innovation is to rely on Bayesian inference to solve for a dense attenuation volume given planar radioscopic images of a moving sample. This approach enables multiple sources of noise to be considered and takes advantage of very limited prior information to solve an otherwise ill-posed problem. Results show that the proposed strategy is able to reconstruct dense volumetric attenuation models from a very limited number of radiographic views over time on synthetic and in-situ data.


Subject(s)
Cone-Beam Computed Tomography/methods , Imaging, Three-Dimensional/methods , Algorithms , Bayes Theorem , Forearm/diagnostic imaging , Hand Bones/diagnostic imaging , Humans , Phantoms, Imaging , Video Recording
10.
Glia ; 67(2): 345-359, 2019 02.
Article in English | MEDLINE | ID: mdl-30506969

ABSTRACT

Prematurity and fetal growth restriction (FGR) are frequent conditions associated with adverse neurocognitive outcomes. We have previously identified early deregulation of genes controlling neuroinflammation as a putative mechanism linking FGR and abnormal trajectory of the developing brain. While the oxytocin system was also found to be impaired following adverse perinatal events, its role in the modulation of neuroinflammation in the developing brain is still unknown. We used a double-hit rat model of perinatal brain injury induced by gestational low protein diet (LPD) and potentiated by postnatal injections of subliminal doses of interleukin-1ß (IL1ß) and a zebrafish model of neuroinflammation. Effects of the treatment with carbetocin, a selective, long lasting, and brain diffusible oxytocin receptor agonist, have been assessed using a combination of histological, molecular, and functional tools in vivo and in vitro. In the double-hit model, white matter inflammation, deficient myelination, and behavioral deficits have been observed and the oxytocin system was impaired. Early postnatal supplementation with carbetocin alleviated microglial activation at both transcriptional and cellular levels and provided long-term neuroprotection. The central anti-inflammatory effects of carbetocin have been shown in vivo in rat pups and in a zebrafish model of early-life neuroinflammation and reproduced in vitro on stimulated sorted primary microglial cell cultures from rats subjected to LPD. Carbetocin treatment was associated with beneficial effects on myelination, long-term intrinsic brain connectivity and behavior. Targeting oxytocin signaling in the developing brain may be an effective approach to prevent neuroinflammation - induced brain damage of perinatal origin.


Subject(s)
Brain Injuries/drug therapy , Brain/pathology , Microglia/drug effects , Receptors, Oxytocin/metabolism , Animals , Animals, Genetically Modified , Animals, Newborn , Brain Injuries/chemically induced , Brain Injuries/pathology , Cells, Cultured , Computational Biology , Diet, Protein-Restricted/adverse effects , Disease Models, Animal , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Interleukin-1beta , Lipopolysaccharides/toxicity , Oxytocics/therapeutic use , Oxytocin/analogs & derivatives , Oxytocin/therapeutic use , Peptide Fragments , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/physiopathology , RNA, Messenger/metabolism , Zebrafish
11.
Int J Mol Sci ; 19(10)2018 Sep 30.
Article in English | MEDLINE | ID: mdl-30274381

ABSTRACT

While arterial reflow after a stroke represents an important challenge for better outcomes, it is also very important that sudden recanalization does not produce local oxidative and nitrogen species, deleterious for the brain and more particularly the immature brain. Our objective was to determine whether a supply in prostaglandin (Pg) E1 (Alprostadil), via its action on arterial pressure, might progressively improve cerebral reperfusion in a neonatal stroke model. Arterial blood flow was measured using ultrasonography. Rate-limiting and Pg terminal synthesizing enzymes were evaluated using reverse-transcriptase polymerase chain reaction. Our data suggests that a supply in PgE1 might delay and improve the ipsilateral reperfusion by decreasing thromboxane A synthase-1 gene, the density of reactive astrocytes and lesion volume.


Subject(s)
Alprostadil/therapeutic use , Collateral Circulation/drug effects , Stroke/drug therapy , Stroke/physiopathology , Alprostadil/pharmacology , Animals , Animals, Newborn , Brain Ischemia/drug therapy , Brain Ischemia/enzymology , Brain Ischemia/genetics , Brain Ischemia/physiopathology , Cerebrovascular Circulation/drug effects , Disease Models, Animal , Female , Male , Rats, Wistar , Stroke/complications , Stroke/enzymology , Thromboxane-A Synthase/genetics , Thromboxane-A Synthase/metabolism
12.
Front Neurol ; 9: 605, 2018.
Article in English | MEDLINE | ID: mdl-30254599

ABSTRACT

Neuroinflammation has a key role in the pathogenesis of perinatal brain injury. Caffeine, a nonspecific antagonist of adenosine receptors (ARs), is widely used to treat apnea of prematurity and has been linked to a decrease in the incidence of cerebral palsy in premature infants. The mechanisms explaining its neuroprotective effect have not yet been elucidated. The objective of this study was to characterize the expression of adenosine and ARs in two neonatal rat models of neuroinflammation and to determine the effect of A2aR blockade on microglial activation assessed through inflammatory cytokine gene expression. We have used two rat models of microglial activation: the gestational low protein diet (LPD) model, associated with chronic brain injury, and postnatal ibotenate intracerebral injections, responsible for acute excitotoxicity injury. Adenosine blood levels have been measured by Tandem Mass Spectrometry. The expression of ARs in vivo was assessed using qPCR and immunohistochemistry. In vivo models have been replicated in vitro on primary microglial cell cultures exposed to A2aR agonist CGS-21680 or antagonist SCH-58261. The effects of these treatments have been assessed on the M1/M2 cytokine expressions measured by RT-qPCR. LPD during pregnancy was associated with higher adenosine levels in pups at postnatal day 1 and 4. A2aR mRNA expression was significantly increased in both cortex and magnetically sorted microglial cells from LPD animals compared to controls. CD73 expression, responsible for extracellular production of brain adenosine, was significantly increased in LPD cortex and sorted microglia cells. Moreover, CD73 protein level was increased in ibotenate treated animals. In vitro experiments confirmed that LPD or control microglial cells exposed to ibotenate display an increased expression, at both protein and molecular levels, of A2aR and M1 markers (IL-1ß, IL-6, iNOS, TNFα). This pro-inflammatory profile was significantly reduced by SCH-58261, which reduces M1 markers in both LPD and ibotenate-exposed cells, with no effect on control cells. In the same experimental conditions, a partial increased of M1 cytokines was observed in response to A2aR agonist CGS-21680. These results support the involvement of adenosine and particularly of its receptor A2aR in the regulation of microglia in two different animal models of neuroinflammation.

13.
Brain Behav Immun ; 73: 375-389, 2018 10.
Article in English | MEDLINE | ID: mdl-29852289

ABSTRACT

Neonatal acute ischemic stroke is a cause of neonatal brain injury that occurs more frequently in males, resulting in associated neurobehavioral disorders. The bases for these sex differences are poorly understood but might include the number, morphology and activation of microglia in the developing brain when subjected to stroke. Interestingly, poly (ADP-ribose) polymerase (PARP) inhibition preferentially protects males against neonatal ischemia. This study aims to examine the effects of PJ34, a PARP inhibitor, on microglial phenotypes at 3 and 8 days and on neurobehavioral disorders in adulthood for both male and female P9 mice subjected to permanent middle cerebral artery occlusion (pMCAo). PJ34 significantly reduced the lesion size by 78% and reduced the density of CX3CR1gfp-labeled microglial cells by 46% when examined 3 days after pMCAo in male but not in female mice. Eight days after pMCAo, the number of Iba1+/Cox-2+ cells did not differ between male and female mice in the cortical peri-infarct region. In the amygdala, Iba1+/Cox-2+ (M1-like) cell numbers were significantly decreased in PJ34-treated males but not in females. Conversely, Iba1+/Arg-1+ (M2-like) and Arg-1+/Cox-2+ (Mtransitional) cell numbers were significantly increased in PJ34-treated females. Regarding neurobehavioral disorders during adulthood, pMCAo induced a motor coordination deficit and a spatial learning deficit in female mice only. PJ34 prevented MBP fibers, motor coordination and learning disorders during adulthood in female mice. Our data show significant sex differences in the effects of PARP inhibition on microglia phenotypes following neonatal ischemia, associated with improved behavior and myelination during adulthood in females only. Our findings suggest that modulating microglial phenotypes may play key roles in behavior disorders and white matter injury following neonatal stroke.


Subject(s)
Brain Ischemia/pathology , Microglia/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Animals , Animals, Newborn , Brain Injuries/complications , Brain Ischemia/metabolism , Disease Models, Animal , Female , Infarction, Middle Cerebral Artery/physiopathology , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Neurons/drug effects , Phenanthrenes/metabolism , Phenanthrenes/pharmacology , Phenotype , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/metabolism , Sex Factors , Stroke/pathology
14.
Nat Commun ; 8(1): 428, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28874660

ABSTRACT

Preterm birth places infants in an adverse environment that leads to abnormal brain development and cerebral injury through a poorly understood mechanism known to involve neuroinflammation. In this study, we integrate human and mouse molecular and neuroimaging data to investigate the role of microglia in preterm white matter damage. Using a mouse model where encephalopathy of prematurity is induced by systemic interleukin-1ß administration, we undertake gene network analysis of the microglial transcriptomic response to injury, extend this by analysis of protein-protein interactions, transcription factors and human brain gene expression, and translate findings to living infants using imaging genomics. We show that DLG4 (PSD95) protein is synthesised by microglia in immature mouse and human, developmentally regulated, and modulated by inflammation; DLG4 is a hub protein in the microglial inflammatory response; and genetic variation in DLG4 is associated with structural differences in the preterm infant brain. DLG4 is thus apparently involved in brain development and impacts inter-individual susceptibility to injury after preterm birth.Inflammation mediated by microglia plays a key role in brain injury associated with preterm birth, but little is known about the microglial response in preterm infants. Here, the authors integrate molecular and imaging data from animal models and preterm infants, and find that microglial expression of DLG4 plays a role.


Subject(s)
Disks Large Homolog 4 Protein/metabolism , Genomics , Infant, Premature/growth & development , Infant, Premature/metabolism , Microglia/metabolism , White Matter/growth & development , White Matter/metabolism , Animals , Brain/growth & development , Brain/metabolism , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Humans , Infant, Newborn , Inflammation/pathology , Interleukin-1beta/pharmacology , Magnetic Resonance Imaging , Mice , Microglia/drug effects , Neuropsychiatry , Protein Interaction Maps/genetics , Quantitative Trait Loci/genetics , STAT3 Transcription Factor/metabolism , Transcriptome/genetics
15.
J Cereb Blood Flow Metab ; 37(9): 3091-3096, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28695754

ABSTRACT

Our objective was to determine whether controlled reflow on one side and/or the other side after bilateral carotid occlusion release could reduce cell death in focal ischemic P14 rats. Arterial blood flow was measured using ultrasonography. Cell death, inflammation and nitrotyrosine were measured using immunofluorescence. When reflow was first induced in the contralateral side, we observed improved outcome markers compared with those when reflow was first induced in the ipsilateral side and/or simultaneous reflow was induced in both sides. Our data suggest that progressive rerouting of arterial flow through the circle of Willis toward the ischemic site reduced cell death.


Subject(s)
Brain Ischemia/therapy , Cerebral Arteries/physiopathology , Cerebrovascular Circulation/physiology , Reperfusion Injury/physiopathology , Reperfusion/methods , Animals , Brain Ischemia/diagnostic imaging , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Cell Death , Cerebral Arteries/pathology , Cyclooxygenase 2/genetics , Disease Models, Animal , Prostaglandin-E Synthases/genetics , Rats, Wistar , Reperfusion Injury/diagnostic imaging , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Treatment Outcome , Tyrosine/analogs & derivatives , Tyrosine/biosynthesis , Ultrasonography
17.
Oncotarget ; 8(6): 9011-9012, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28129646
18.
Brain Behav Immun ; 63: 197-209, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27818218

ABSTRACT

The cognitive and behavioural deficits caused by traumatic brain injury (TBI) to the immature brain are more severe and persistent than TBI in the mature brain. Understanding this developmental sensitivity is critical as children under four years of age sustain TBI more frequently than any other age group. Microglia (MG), resident immune cells of the brain that mediate neuroinflammation, are activated following TBI in the immature brain. However, the type and temporal profile of this activation and the consequences of altering it are still largely unknown. In a mouse model of closed head weight drop paediatric brain trauma, we characterized i) the temporal course of total cortical neuroinflammation and the phenotype of ex vivo isolated CD11B-positive microglia/macrophage (MG/MΦ) using a battery of 32 markers, and ii) neuropathological outcome 1 and 5days post-injury. We also assessed the effects of targeting MG/MΦ activation directly, using minocycline a prototypical microglial activation antagonist, on these processes and outcome. TBI induced a moderate increase in both pro- and anti-inflammatory cytokines/chemokines in the ipsilateral hemisphere. Isolated cortical MG/MΦ expressed increased levels of markers of endogenous reparatory/regenerative and immunomodulatory phenotypes compared with shams. Blocking MG/MΦ activation with minocycline at the time of injury and 1 and 2days post-injury had only transient protective effects, reducing ventricular dilatation and cell death 1day post-injury but having no effect on injury severity at 5days. This study demonstrates that, unlike in adults, the role of MG/MΦ in injury mechanisms following TBI in the immature brain may not be negative. An improved understanding of MG/MΦ function in paediatric TBI could support translational efforts to design therapeutic interventions.


Subject(s)
Brain Injuries, Traumatic/metabolism , Macrophage Activation/physiology , Microglia/metabolism , Animals , Brain/metabolism , Brain Injuries/immunology , Brain Injuries/metabolism , Brain Injuries, Traumatic/immunology , Chemokines/immunology , Chemokines/metabolism , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Macrophage Activation/drug effects , Macrophage Activation/immunology , Macrophages/metabolism , Mice , Minocycline/pharmacology
19.
Stroke ; 47(12): 3048-3052, 2016 12.
Article in English | MEDLINE | ID: mdl-27834752

ABSTRACT

BACKGROUND AND PURPOSE: We previously showed that the selective neuronal nitric oxide synthase inhibitor 7-nitroindazole (7-NI) increases cerebral microcirculation in a juvenile ischemic rat model. We address the roles of cyclooxygenase (COX)-elaborated prostaglandins in collateral recruitment and blood supply. METHODS: Fourteen-day-old rats were subjected to ischemia-reperfusion and treated with either PBS or 7-NI (25 mg/kg) at the reperfusion onset. Six-keto-prostaglandin F1α was measured using ELISA. COX-1 and COX-2 and prostaglandin terminal synthesizing enzymes were evaluated using reverse-transcriptase polymerase chain reaction and immunofluorescence. Microvascular blood flow indexes (artery diameter and capillaries number) were measured using sidestream dark-field videomicroscopy in PBS- and 7-NI-treated ischemic rats in the absence or presence of the COX-2 inhibitor NS-398 (5 mg/kg). Cell death was measured with the TUNEL (terminal transferase dUTP nick end labeling) assay and cleaved-caspase-3 immunostaining. RESULTS: Six-keto-prostaglandin F1α and COX-2, associated with a prostaglandin E synthase, were significantly increased in PBS- and 7-NI-treated animals 15 minutes and 1 hour after ischemia-reperfusion, respectively. In contrast and as compared with PBS, 7-NI significantly decreased prostacyclin synthase and cytosolic prostaglandins E synthase mRNA. Selective COX-2 inhibition significantly decreased blood flow indexes and significantly reversed the effects of 7-NI, including the number of TUNEL+- and cleaved-caspase-3+-nuclei. CONCLUSIONS: These results show that the juvenile rat brains mostly respond to ischemia by a COX-2-dependent prostaglandins production and suggest that the transcriptional responses observed under 7-NI facilitate and reorient COX-2-dependent prostaglandins production.


Subject(s)
6-Ketoprostaglandin F1 alpha/metabolism , Cerebrovascular Circulation , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Microcirculation , Prostaglandin-E Synthases/metabolism , Reperfusion Injury/metabolism , Animals , Disease Models, Animal , Rats
20.
ERJ Open Res ; 2(1)2016 Jan.
Article in English | MEDLINE | ID: mdl-27730173

ABSTRACT

Inhaled nitric oxide (iNO) is commonly used in the treatment of very ill pre-term newborns. Previous studies showed that exogenous NO could affect endothelial NO synthase (eNOS) activity and expression in vascular endothelial cell cultures or adult rat models, but this has never been fully described in newborn rat lungs. We therefore aimed to assess the effects of iNO on eNOS expression and activity in newborn rats. Rat pups, post-natal day (P) 0 to P7, and their dams were placed in a chamber containing NO at 5 ppm (iNO-5 ppm group) or 20 ppm (iNO-20 ppm group), or in room air (control group). Rat pups were sacrificed at P7 and P14 for evaluation of lung eNOS expression and activity. At P7, eNOS protein expression in total lung lysates, in bronchial and arterial sections, was significantly decreased in the iNO-20 ppm versus control group. At P14, eNOS expression was comparable among all three groups. The amounts of eNOS mRNA significantly differed at P7 between the iNO-20 ppm and control groups. NOS activity decreased in the iNO-20 ppm group at P7 and returned to normal levels at P14. There was an imbalance between superoxide dismutase and NOS activities in the iNO-20 ppm group at P7. Inhalation of NO at 20 ppm early after birth decreases eNOS gene transcription, protein expression and enzyme activity. This decrease might account for the rebound phenomenon observed in patients treated with iNO.

SELECTION OF CITATIONS
SEARCH DETAIL
...