Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Mater ; 33(23): e1905406, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32666603

ABSTRACT

Herein, the role that point defects have played over the last two decades in realizing solid-state laser refrigeration is discussed. A brief introduction to the field of solid-state laser refrigeration is given with an emphasis on the fundamental physical phenomena and quantized electronic transitions that have made solid-state laser-cooling possible. Lanthanide-based point defects, such as trivalent ytterbium ions (Yb3+ ), have played a central role in the first demonstrations and subsequent development of advanced materials for solid-state laser refrigeration. Significant discussion is devoted to the quantum mechanical description of optical transitions in lanthanide ions, and their influence on laser cooling. Transition-metal point defects have been shown to generate substantial background absorption in ceramic materials, decreasing the overall efficiency of a particular laser refrigeration material. Other potential color centers based on fluoride vacancies with multiple potential charge states are also considered. In conclusion, novel materials for solid-state laser refrigeration, including color centers in diamond that have recently been proposed to realize the solid-state laser refrigeration of semiconducting materials, are discussed.

2.
Nat Commun ; 11(1): 3235, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32576820

ABSTRACT

Photothermal heating represents a major constraint that limits the performance of many nanoscale optoelectronic and optomechanical devices including nanolasers, quantum optomechanical resonators, and integrated photonic circuits. Here, we demonstrate the direct laser refrigeration of a semiconductor optomechanical resonator >20 K below room temperature based on the emission of upconverted, anti-Stokes photoluminescence of trivalent ytterbium ions doped within a yttrium-lithium-fluoride (YLF) host crystal. Optically-refrigerating the lattice of a dielectric resonator has the potential to impact several fields including scanning probe microscopy, the sensing of weak forces, the measurement of atomic masses, and the development of radiation-balanced solid-state lasers. In addition, optically refrigerated resonators may be used in the future as a promising starting point to perform motional cooling for exploration of quantum effects at mesoscopic length scales, temperature control within integrated photonic devices, and solid-state laser refrigeration of quantum materials.

3.
Water Res ; 163: 114871, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31351353

ABSTRACT

Wastewater treatment plants are known to release microplastics that have been detected in aquatic and terrestrial organisms constituting part of the human diet. Chlorination of wastewater-borne microplastics was hypothesized to induce chemical and physical changes detectable by Raman spectroscopy and differential scanning calorimetry (DSC). In the laboratory, virgin plastics (∼0.05 × 2 × 2 mm) were exposed to differing sterilization conditions representative of dosages used in the disinfection of drinking water, wastewater, and heavily contaminated surfaces. Polypropylene (PP) was most resistant to chlorination, followed by high density polyethylene (HDPE) and polystyrene (PS). Polystyrene showed degradation, indicated by changes in Raman peak widths, at concentration-time regimes (CT values) as low as 75 mg min/L, whereas HDPE and PP remained unaltered even at chlorine doses characteristic of wastewater disinfection (150 mg min/L). However, HDPE and PS were not completely resistant to oxidative attack by chlorination. Under extremely harsh conditions, shifts in Raman peaks and the formation of new bonds were observed. These results show that plastics commonly used in consumer products can be chemically altered, some even under conditions prevailing during wastewater treatment. Changes in polymer properties, observed for HDPE and PP under extreme exposure conditions only, are predicted to alter the risk microplastics pose to aquatic and terrestrial biota, since an increase in carbon-chlorine (C-Cl) bonds is known to increase toxicity, rendering the polymers more hydrophobic and thus more prone to adsorb, accumulate, and transport harmful persistent pollutants to biota in both aquatic and terrestrial environments.


Subject(s)
Plastics , Water Pollutants, Chemical , Chlorine , Halogenation , Humans , Wastewater
5.
ACS Appl Mater Interfaces ; 11(25): 22817-22823, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31149802

ABSTRACT

The development of upconversion nanomaterials for many photonic applications requires a detailed understanding of their radiative lifetimes that in turn depend critically on local environmental conditions. In this work, hexagonal (ß-phase) sodium-yttrium-fluoride (NaYF4) nanowires (NWs) were synthesized and substitutionally co-doped with a luminescent solid solution of trivalent erbium and ytterbium ions. A single-beam laser trapping instrument was used in tandem with a piezo-controlled, variable-temperature stage to precisely vary the nanowire's distance from the substrate. The spontaneous photoluminescence lifetime of the 4S3/2 → 4I15/2 transition from Er3+ ions was observed to change by >60% depending on the ions' separation distance from a planar (water/glass) dielectric interface. The 4S3/2 state lifetime is observed to increase by a factor of 1.62 ± 0.01 as the distance from the quartz coverslip increases from ∼0 nm to ∼40 µm. Less significant changes in the luminescence lifetime (≤10%) were observed over a temperature range between 25 and 50 °C. The distance dependence of the lifetime is interpreted quantitatively in the context of classical electromagnetic coupling between Er3+ ions within the nanowire and the adjacent dielectric interface. We also demonstrate potential applications of the NaYF4 NWs for both controlling and probing temperatures at nanometer scales by integrating them within a poly(dimethylsiloxane) composite matrix.

6.
Nano Lett ; 17(12): 7761-7766, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29119791

ABSTRACT

Modulation of weak interlayer interactions between quasi-two-dimensional atomic planes in the transition metal dichalcogenides (TMDCs) provides avenues for tuning their functional properties. Here we show that above-gap optical excitation in the TMDCs leads to an unexpected large-amplitude, ultrafast compressive force between the two-dimensional layers, as probed by in situ measurements of the atomic layer spacing at femtosecond time resolution. We show that this compressive response arises from a dynamic modulation of the interlayer van der Waals interaction and that this represents the dominant light-induced stress at low excitation densities. A simple analytic model predicts the magnitude and carrier density dependence of the measured strains. This work establishes a new method for dynamic, nonequilibrium tuning of correlation-driven dispersive interactions and of the optomechanical functionality of TMDC quasi-two-dimensional materials.

7.
Nanoscale ; 8(36): 16259-16265, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27714055

ABSTRACT

Zirconium trisulphide (ZrS3), a member of the layered transition metal trichalcogenides (TMTCs) family, has been studied by angle-resolved photoluminescence spectroscopy (ARPLS). The synthesized ZrS3 layers possess a pseudo one-dimensional nature where each layer consists of ZrS3 chains extending along the b-lattice direction. Our results show that the optical properties of few-layered ZrS3 are highly anisotropic as evidenced by large PL intensity variation with the polarization direction. Light is efficiently absorbed when the E-field is polarized along the chain (b-axis), but the field is greatly attenuated and absorption is reduced when it is polarized vertical to the 1D-like chains as the wavelength of the exciting light is much longer than the width of each 1D chain. The observed PL variation with polarization is similar to that of conventional 1D materials, i.e., nanowires, and nanotubes, except for the fact that here the 1D chains interact with each other giving rise to a unique linear dichroism response that falls between the 2D (planar) and 1D (chain) limit. These results not only mark the very first demonstration of PL polarization anisotropy in 2D systems, but also provide novel insight into how the interaction between adjacent 1D-like chains and the 2D nature of each layer influences the overall optical anisotropy of pseudo-1D materials. Results are anticipated to have an impact on optical technologies such as polarized detectors, near-field imaging, communication systems, and bio-applications relying on the generation and detection of polarized light.

8.
Nat Commun ; 7: 12952, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27653671

ABSTRACT

Transition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of TiS3 both experimentally and theoretically. Unlike other two-dimensional systems, the Raman active peaks of TiS3 have only out-of-plane vibrational modes, and interestingly some of these vibrations involve unique rigid-chain vibrations and S-S molecular oscillations. High-pressure Raman studies further reveal that the AgS-S S-S molecular mode has an unconventional negative pressure dependence, whereas other peaks stiffen as anticipated. Various vibrational modes are doubly degenerate at ambient pressure, but the degeneracy is lifted at high pressures. These results establish the unusual vibrational properties of TiS3 with strong in-plane anisotropy, and may have relevance to understanding of vibrational properties in other anisotropic two-dimensional material systems.

9.
Adv Mater ; 28(34): 7375-82, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27271214

ABSTRACT

Atomically thin quasi-2D GaSe flakes are synthesized via van der Waals (vdW) epitaxy on a polar Si (111) surface. The bandgap is continuously tuned from its commonly accepted value at 620 down to the 700 nm range, only attained previously by alloying Te into GaSe (GaSex Te1- x ). This is accomplished by manipulating various vdW epitaxy kinetic factors, which allows the choice bet ween screw-dislocation-driven and layer-bylayer growth, and the design of different morphologies with different material-substrate interaction (strain) energies.

10.
Nanoscale ; 8(7): 3870-87, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26831401

ABSTRACT

At the turn of this century, Herbert Kroemer, the 2000 Nobel Prize winner in Physics, famously commented that "the interface is the device". This statement has since opened up unparalleled opportunities at the interface of conventional three-dimensional (3D) materials (H. Kroemer, Quasi-Electric and Quasi-Magnetic Fields in Non-Uniform Semiconductors, RCA Rev., 1957, 18, 332-342). More than a decade later, Sir Andre Geim and Irina Grigorieva presented their views on 2D heterojunctions which further cultivated broad interests in the 2D materials field. Currently, advances in two-dimensional (2D) materials enable us to deposit layered materials that are only one or few unit-cells in thickness to construct sharp in-plane and out-of-plane interfaces between dissimilar materials, and to be able to fabricate novel devices using these cutting-edge techniques. The interface alone, which traditionally dominated overall device performance, thus has now become the device itself. Fueled by recent progress in atomically thin materials, we are now at the ultimate limit of interface physics, which brings to us new and exciting opportunities, with equally demanding challenges. This paper endeavors to provide stalwarts and newcomers a perspective on recent advances in synthesis, fundamentals, applications, and future prospects of a large variety of heterojunctions of atomically thin materials.


Subject(s)
Semiconductors , Chalcogens/chemistry , Disulfides/chemistry , Microscopy, Electron, Scanning Transmission , Molybdenum/chemistry , Nanostructures/chemistry , Transition Elements/chemistry , Tungsten/chemistry
11.
Nanoscale ; 7(40): 17109-15, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26419224

ABSTRACT

Owing to their strong photon emission, low excitonic binding energies, and nearly-ideal band offset values for water splitting reactions, direct gap quasi-2D gallium chalcogenides are potential candidates for applications in energy harvesting, optoelectronics, and photonics. Unlike other 2D materials systems, chemical functionalization of gallium chalcogenides is still at its seminal stages. Here, we propose vapor phase pyridine intercalation technique to manipulate optical properties of gallium chalcogenides. After functionalization, the excitonic dynamics of quasi-2D GaSe change significantly as evidenced by an increase in integrated PL intensity and emergence of a new emission feature that is below the band edge. Based on our DFT calculations, we attribute these to formation of bound exciton complexes at the trap sites introduced by chemical reaction between pyridine and GaSe. On the contrary, pyridine functionalization does not impact the optical properties of GaTe, instead treats GaTe surface to prevent oxidization of tellurium atoms. Overall, results suggest novel ways to control properties of gallium chalcogenides on demand and unleash their full potential for a range of applications in photonics and optoelectronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...