Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34740033

ABSTRACT

Fatty liver is a side effect of chemotherapy that limits the ability to treat colorectal cancer (CRC) patients in the most effective way. The aim of this study was to determine hepatic fatty acid composition and expression of genes involved in lipid metabolism at two time points following sequential chemotherapy treatment with Irinotecan (CPT-11)+5-fluorouracil (5-FU), agents commonly used to treat human colorectal cancer. Female Fischer 344 rats were provided a semi-purified AIN-76 basal diet with modified fat component. One cycle of chemotherapy consisted of CPT-11+5-FU and was initiated 2 weeks after tumor implantation (D0); a second cycle was given one week later. Two days after each cycle (Day 2 and Day 9), animals were euthanized, and livers collected. Triacylglycerol (TAG) and phospholipid (PL) fractions were isolated using thin layer chromatography and fatty acids (FAs) were quantified using gas chromatography. Expression of 44 lipid metabolism genes were analyzed by qPCR. Total liver TAG level was lowest after the second cycle D0 and D2 (P = 0.05) characterized by lower content of n-6 and n-3 polyunsaturated fatty acids (PUFAs). N-6 PUFAs significantly declined with subsequent treatments. Of 44 genes analyzed, 13 genes were altered with CPT-11+5-FU treatment. Expression of genes VLCAD and DGAT1, involved in fatty acid oxidation as well as DGAT1 in TAG synthesis, were significantly elevated after each cycle, whereas expression of genes ELOVL2 and FADS2, involved in fatty acid elongation and desaturation were significantly lower at D9 compared to D2 and D0 (P < 0.03). Hepatic total TAG PUFA was depleted, and genes involved in pathways of PUFA synthesis were down-regulated by chemotherapy treatment. This observation suggests impediments in lipid metabolism in the liver that could potentially impact peripheral availability of essential fatty acids.


Subject(s)
Antimetabolites, Antineoplastic/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Docosahexaenoic Acids/metabolism , Fatty Acids, Omega-6/metabolism , Fluorouracil/adverse effects , Irinotecan/adverse effects , Liver/metabolism , Signal Transduction/drug effects , Topoisomerase I Inhibitors/adverse effects , Animals , Disease Models, Animal , Fatty Liver/chemically induced , Female , Gene Expression/drug effects , Lipid Metabolism/genetics , Rats , Rats, Inbred F344 , Treatment Outcome , Triglycerides/metabolism
2.
Liver Int ; 41(5): 1020-1032, 2021 05.
Article in English | MEDLINE | ID: mdl-33548108

ABSTRACT

Hyperammonemia associated with chronic liver disease (CLD) is implicated in the pathogenesis of hepatic encephalopathy (HE). The gut is a major source of ammonia production that contributes to hyperammonemia in CLD and HE and remains the primary therapeutic target for lowering hyperammonemia. As an ammonia-lowering strategy, Escherichia coli Nissle 1917 bacterium was genetically modified to consume and convert ammonia to arginine (S-ARG). S-ARG was further modified to additionally synthesize butyrate (S-ARG + BUT). Both strains were evaluated in bile-duct ligated (BDL) rats; experimental model of CLD and HE. METHODS: One-week post-surgery, BDLs received non-modified EcN (EcN), S-ARG, S-ARG + BUT (3x1011 CFU/day) or vehicle until sacrifice at 3 or 5 weeks. Plasma (ammonia/pro-inflammatory/liver function), liver fibrosis (hydroxyproline), liver mRNA (pro-inflammatory/fibrogenic/anti-apoptotic) and colon mRNA (pro-inflammatory) biomarkers were measured post-sacrifice. Memory, motor-coordination, muscle-strength and locomotion were assessed at 5 weeks. RESULTS: In BDL-Veh rats, hyperammonemia developed at 3 and further increased at 5 weeks. This rise was prevented by S-ARG and S-ARG + BUT, whereas EcN was ineffective. Memory impairment was prevented only in S-ARG + BUT vs BDL-Veh. Systemic inflammation (IL-10/MCP-1/endotoxin) increased at 3 and 5 weeks in BDL-Veh. S-ARG + BUT attenuated inflammation at both timepoints (except 5-week endotoxin) vs BDL-Veh, whereas S-ARG only attenuated IP-10 and MCP-1 at 3 weeks. Circulating ALT/AST/ALP/GGT/albumin/bilirubin and gene expression of liver function markers (IL-10/IL-6/IL-1ß/TGF-ß/α-SMA/collagen-1α1/Bcl-2) were not normalized by either strain. Colonic mRNA (TNF-α/IL-1ß/occludin) markers were attenuated by synthetic strains at both timepoints vs BDL-Veh. CONCLUSION: S-ARG and S-ARG + BUT attenuated hyperammonemia, with S-ARG + BUT additional memory protection likely due to greater anti-inflammatory effect. These innovative strategies, particularly S-ARG + BUT, have potential to prevent HE.


Subject(s)
Hyperammonemia , Animals , Bile , Bile Ducts , Disease Models, Animal , Escherichia coli , Ligation , Rats
3.
Gastroenterology ; 152(5): 1002-1013.e9, 2017 04.
Article in English | MEDLINE | ID: mdl-28012848

ABSTRACT

BACKGROUND & AIMS: Many cancers in the proximal colon develop via from sessile serrated adenomas (SSAs), which have flat, subtle features that are difficult to detect with conventional white-light colonoscopy. Many SSA cells have the V600E mutation in BRAF. We investigated whether this feature could be used with imaging methods to detect SSAs in patients. METHODS: We used phage display to identify a peptide that binds specifically to SSAs, using subtractive hybridization with HT29 colorectal cancer cells containing the V600E mutation in BRAF and Hs738.St/Int cells as a control. Binding of fluorescently labeled peptide to colorectal cancer cells was evaluated with confocal fluorescence microscopy. Rats received intra-colonic 0.0086 mg/kg, 0.026 mg/kg, or 0.86 mg/kg peptide or vehicle and morbidity, mortality, and injury were monitored twice daily to assess toxicity. In the clinical safety study, fluorescently labeled peptide was topically administered, using a spray catheter, to the proximal colon of 25 subjects undergoing routine outpatient colonoscopies (3 subjects were given 2.25 µmol/L and 22 patients were given 76.4 µmol/L). We performed blood cell count, chemistry, liver function, and urine analyses approximately 24 hours after peptide administration. In the clinical imaging study, 38 subjects undergoing routine outpatient colonoscopies, at high risk for colorectal cancer, or with a suspected unresected proximal colonic polyp, were first evaluated by white-light endoscopy to identify suspicious regions. The fluorescently labeled peptide (76.4 µmol/L) was administered topically to proximal colon, unbound peptide was washed away, and white-light, reflectance, and fluorescence videos were recorded digitally. Fluorescence intensities of SSAs were compared with those of normal colonic mucosa. Endoscopists resected identified lesions, which were analyzed histologically by gastrointestinal pathologists (reference standard). We also analyzed the ability of the peptide to identify SSAs vs adenomas, hyperplastic polyps, and normal colonic mucosa in specimens obtained from the tissue bank at the University of Michigan. RESULTS: We identified the peptide sequence KCCFPAQ and measured an apparent dissociation constant of Kd = 72 nM and an apparent association time constant of K = 0.174 min-1 (5.76 minutes). During fluorescence imaging of patients during endoscopy, regions of SSA had 2.43-fold higher mean fluorescence intensity than that for normal colonic mucosa. Fluorescence labeling distinguished SSAs from normal colonic mucosa with 89% sensitivity and 92% specificity. The peptide had no observed toxic effects in animals or patients. In the analysis of ex vivo specimens, peptide bound to SSAs had significantly higher mean fluorescence intensity than to hyperplastic polyps. CONCLUSIONS: We have identified a fluorescently labeled peptide that has no observed toxic effects in animals or humans and can be used for wide-field imaging of lesions in the proximal colon. It distinguishes SSAs from normal colonic mucosa with 89% sensitivity and 92% specificity. This targeted imaging method might be used in early detection of premalignant serrated lesions during routine colonoscopies. ClinicalTrials.gov ID: NCT02156557.


Subject(s)
Adenoma/pathology , Colonic Neoplasms/pathology , Colonic Polyps/pathology , Adenoma/diagnostic imaging , Adenoma/genetics , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/genetics , Colonic Polyps/diagnostic imaging , Colonic Polyps/genetics , Colonoscopy , Esophagoscopy , Female , Fluorescein-5-isothiocyanate , Fluorescent Dyes , HT29 Cells , Humans , Male , Microscopy, Confocal , Microscopy, Fluorescence , Middle Aged , Optical Imaging , Proto-Oncogene Proteins B-raf/genetics , Rats
4.
Cell Mol Gastroenterol Hepatol ; 2(2): 222-237, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27840845

ABSTRACT

BACKGROUND & AIMS: Conventional white-light colonoscopy aims to reduce the incidence and mortality of colorectal cancer (CRC). CRC has been found to arise from missed polypoid and flat precancerous lesions. We aimed to establish proof-of-concept for real-time endoscopic imaging of colonic adenomas using a near-infrared peptide that is specific for claudin-1. METHODS: We used gene expression profiles to identify claudin-1 as a promising early CRC target, and performed phage display against the extracellular loop of claudin-1 (amino acids 53-80) to identify the peptide RTSPSSR. With a Cy5.5 label, we characterized binding parameters and showed specific binding to human CRC cells. We collected in vivo near-infrared fluorescence images endoscopically in the CPC;Apc mouse, which develops colonic adenomas spontaneously. With immunofluorescence, we validated specific peptide binding to adenomas from the proximal human colon. RESULTS: We found a 2.5-fold increase in gene expression for claudin-1 in human colonic adenomas compared with normal. We showed specific binding of RTSPSSR to claudin-1 in knockdown and competition studies, and measured an affinity of 42 nmol/L and a time constant of 1.2 minutes to SW620 cells. In the mouse, we found a significantly higher target-to-background ratio for both polypoid and flat adenomas compared with normal by in vivo images. On immunofluorescence, we found significantly greater intensity for human adenomas (mean ± SD, 25.5 ± 14.0) vs normal (mean ± SD, 9.1 ± 6.0) and hyperplastic polyps (mean ± SD, 3.1 ± 3.7; P = 10-5 and 8 × 10-12, respectively), and for sessile serrated adenomas (mean ± SD, 20.1 ± 13.3) vs normal and hyperplastic polyps (P = .02 and 3 × 10-7, respectively). CONCLUSIONS: Claudin-1 is overexpressed in premalignant colonic lesions, and can be detected endoscopically in vivo with a near-infrared, labeled peptide.

5.
Cell Metab ; 24(3): 447-461, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27546461

ABSTRACT

Dietary iron intake and systemic iron balance are implicated in colorectal cancer (CRC) development, but the means by which iron contributes to CRC are unclear. Gene expression and functional studies demonstrated that the cellular iron importer, divalent metal transporter 1 (DMT1), is highly expressed in CRC through hypoxia-inducible factor 2α-dependent transcription. Colon-specific Dmt1 disruption resulted in a tumor-selective inhibitory effect of proliferation in mouse colon tumor models. Proteomic and genomic analyses identified an iron-regulated signaling axis mediated by cyclin-dependent kinase 1 (CDK1), JAK1, and STAT3 in CRC progression. A pharmacological inhibitor of DMT1 antagonized the ability of iron to promote tumor growth in a CRC mouse model and a patient-derived CRC enteroid orthotopic model. Our studies implicate a growth-promoting signaling network instigated by elevated intracellular iron levels in tumorigenesis, offering molecular insights into how a key dietary component may contribute to CRC.


Subject(s)
Carcinogenesis/pathology , Cation Transport Proteins/metabolism , Cell Cycle , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Iron/metabolism , Janus Kinases/metabolism , STAT3 Transcription Factor/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , CDC2 Protein Kinase/metabolism , Carcinogenesis/metabolism , Cation Transport Proteins/genetics , Cell Cycle/drug effects , Cell Proliferation/drug effects , Colitis/complications , Colitis/pathology , Colon/pathology , Colorectal Neoplasms/genetics , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Inflammation/complications , Inflammation/pathology , Iron/pharmacology , Signal Transduction/drug effects
7.
Bioconjug Chem ; 27(2): 481-94, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26709709

ABSTRACT

We report the development, characterization, and validation of a peptide specific for the extracellular domain of HER2. This probe chemistry was developed for molecular imaging by using a structural model to select an optimal combination of amino acids that maximize the likelihood for unique hydrophobic and hydrophilic interactions with HER2 domain 3. The sequence KSPNPRF was identified and conjugated with either FITC or Cy5.5 via a GGGSK linker using Fmoc-mediated solid-phase synthesis to demonstrate flexibility for this chemical structure to be labeled with different fluorophores. A scrambled sequence was developed for control by altering the conformationally rigid spacer and moving both hydrophobic and hydrophilic amino acids on the C-terminus. We validated peptide specificity for HER2 in knockdown and competition experiments using human colorectal cancer cells in vitro, and measured a binding affinity of kd = 21 nM and time constant of k = 0.14 min(-1) (7.14 min). We used this peptide with either topical or intravenous administration in a preclinical model of colorectal cancer to demonstrate specific uptake in spontaneous adenomas and to show feasibility for real time in vivo imaging with near-infrared fluorescence. We used this peptide in immunofluorescence studies of human proximal colon specimens to evaluate specificity for sessile serrated and sporadic adenomas. Improved visualization can be used endoscopically to guide tissue biopsy and detect premalignant lesions that would otherwise be missed. Our peptide design for specificity to HER2 is promising for clinical translation in molecular imaging methods for early cancer detection.


Subject(s)
Fluorescent Dyes/chemistry , Molecular Imaging/methods , Peptides/chemistry , Receptor, ErbB-2/analysis , Animals , Carbocyanines/chemistry , Carbocyanines/metabolism , Cell Line, Tumor , Colon/metabolism , Colon/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Fluorescein-5-isothiocyanate/chemistry , Fluorescein-5-isothiocyanate/metabolism , Fluorescent Dyes/metabolism , Humans , Mice , Microscopy, Fluorescence , Peptides/metabolism , Receptor, ErbB-2/metabolism , Solid-Phase Synthesis Techniques
8.
Biomed Opt Express ; 6(8): 3074-83, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26309768

ABSTRACT

We demonstrate a handheld multiphoton endomicroscope with 3.4 mm distal diameter that can repetitively image mouse colon in vivo. A 2D resonant MEMS mirror was developed to perform beam scanning in a Lissajous pattern. The instrument has an effective numerical aperture of 0.63, lateral and axial resolution of 2.03 and 9.02 µm, respectively, working distance of 60 µm, and image field-of-view of 300 × 300 µm(2). Hoechst was injected intravenously in mice to stain cell nuclei. We were able to collect histology-like images in vivo at 5 frames/sec, and distinguish between normal and pre-malignant colonic epithelium.

9.
Clin Transl Gastroenterol ; 6: e101, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26181290

ABSTRACT

OBJECTIVES: Colorectal cancer initially lies dormant as dysplasia, a premalignant state that provides an opportunity for early cancer detection. Dysplasia can be flat in morphology, focal in size, and patchy in distribution, and thus it appears "invisible" on conventional wide-field endoscopy. AIMS: We aim to develop and validate a peptide that is specific for epidermal growth factor receptor (EGFR), a cell surface target that is overexpressed in colonic adenomas and is readily accessible for imaging. METHODS: We expressed and purified the extracellular domain of EGFR for use with phage display to identify a peptide QRHKPRE that binds to domain 2 of this target. A near-infrared fluorescence endoscope was used to perform in vivo imaging to validate specific peptide binding to spontaneous colonic adenomas in a mouse model with topical administration. We also validated specific peptide binding to human colonic adenomas on immunohistochemistry and immunofluorescence. RESULTS: After labeling with Cy5.5, we validated specific peptide binding to EGFR on knockdown and competition studies. Peptide binding to cells occurred within 2.46 min and had an affinity of 50 nm. No downstream signaling was observed. We measured a target-to-background ratio of 4.0±1.7 and 2.7±0.7, for polyps and flat lesions, respectively. On immunofluorescence of human colonic specimens, greater intensity from peptide binding to dysplasia than normal was found with a 19.4-fold difference. CONCLUSIONS: We have selected and validated a peptide that can be used as a specific contrast agent to identify colonic adenomas that overexpress EGFR in vivo on fluorescence endoscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...