Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 16(7): e1905013, 2020 02.
Article in English | MEDLINE | ID: mdl-31880080

ABSTRACT

Active tumor targeting involves the decoration of nanomaterials (NMs) with oncotropic vector biomolecules that selectively recognize certain antigens on malignant cells or in the tumor microenvironment. This strategy can facilitate intracellular uptake of NM through specific interactions such as receptor-mediated endocytosis and can lead to prolonged retention in the malignant tissues by preventing rapid efflux from the tumor. Here, the design of actively targeting, renally excretible bimodal dendritic polyglycerols (dPGs) for diagnostic cancer imaging is described. Single-domain antibodies (sdAbs) specifically binding to the epidermal growth factor receptor (EGFR) are employed herein as targeting warheads owing to their small size and high affinity for their corresponding antigen. The dPGs equipped with EGFR-targeting feature are compared head-to-head with their nontargeting counterparts in terms of interaction with EGFR-overexpressing cells in vitro as well as accumulation at receptor-positive tumors in vivo. Experimental results reveal a higher specificity and preferential tumor accumulation for the α-EGFR dPGs, resulting from the introduction of active targeting capabilities on their backbone. These results highlight the potential for improving the tumor uptake properties of dPGs by strategic use of sdAb functionalization, which can ultimately prove useful to the development of ultrasmall NM with highly specific tumor accumulation.


Subject(s)
Diagnostic Techniques and Procedures , Glycerol , Neoplasms , Polymers , Single-Domain Antibodies , Endocytosis , ErbB Receptors/metabolism , Glycerol/analysis , Hep G2 Cells , Humans , Nanostructures , Neoplasms/diagnostic imaging , Polymers/analysis , Protein Binding , Single-Domain Antibodies/metabolism , Tumor Microenvironment
2.
Nanoscale ; 9(25): 8723-8739, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28616954

ABSTRACT

Dendritic polyglycerols (dPG) are water soluble, polyether-based nanomaterials which hold great potential in diagnostic as well as therapeutic applications. In order to translate them for in vivo applications, a systematic assessment regarding their cell and tissue interactions as well as their metabolic fate in vivo is a crucial step. Herein, we explore the structure-activity relationship of three different sizes (ca. 3, 5, and 10 nm) of neutral dendritic polyglycerol (dPG) and their corresponding negatively charged sulfate analogs (dPGS) on their in vitro and in vivo characteristics. Cellular metabolic activity was studied in A431 and HEK293 cells. Biomolecular corona formation was determined using an electrophoretic mobility shift assay, which showed an increased protein binding of the dPGS even with serum concentrations as low as 20%. An in situ technique, microscale thermophoresis, was employed to address the binding affinities of these nanomaterials with serum proteins such as serum albumin, apo-transferrin, and fibrinogen. In addition, nanoparticle-cell interactions were studied in differentiated THP-1 cells which showed a charge dependent scavenger receptor-mediated uptake. In line with this data, detailed biodistribution and small animal PET imaging studies in Wistar rats using 68Ga-labeled dPG-/dPGS-NOTA conjugates showed that the neutral dPG-NOTA conjugates were quantitatively excreted via the kidneys with a subsequent hepatobiliary excretion with an increase in their size, whereas the polysulfated analogs (dPGS-NOTA) were sequestered preferentially in the liver and kidneys irrespective of their size. Taken together, this systematic study accentuates that the pharmacokinetics of dPGs is critically dependent on the overall size and charge and can be, fine-tuned for the intended requirements in nano-theranostics.

3.
Adv Healthc Mater ; 6(6)2017 Mar.
Article in English | MEDLINE | ID: mdl-28218487

ABSTRACT

Owing to their tunable blood circulation time and suitable plasma stability, polymer-based nanomaterials hold a great potential for designing and utilising multifunctional nanocarriers for efficient imaging and effective treatment of cancer. When tagged with appropriate radionuclides, they may allow for specific detection (diagnosis) as well as the destruction of tumours (therapy) or even customization of materials, aiming to both diagnosis and therapy (theranostic approach). This review provides an overview of recent developments of radiolabelled polymeric nanomaterials (natural and synthetic polymers) for molecular imaging of cancer, specifically, applying nuclear techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Different approaches to radiolabel polymers are evaluated from the methodical radiochemical point of view. This includes new bifunctional chelating agents (BFCAs) for radiometals as well as novel labelling methods. Special emphasis is given to eligible strategies employed to evade the mononuclear phagocytic system (MPS) in view of efficient targeting. The discussion encompasses promising strategies currently employed as well as emerging possibilities in radionuclide-based cancer therapy. Key issues involved in the clinical translation of radiolabelled polymers and future scopes of this intriguing research field are also discussed.


Subject(s)
Isotope Labeling/methods , Neoplasms , Positron-Emission Tomography , Radiopharmaceuticals/therapeutic use , Single Photon Emission Computed Tomography Computed Tomography , Theranostic Nanomedicine/methods , Animals , Humans , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy
4.
Macromol Biosci ; 16(3): 412-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26644323

ABSTRACT

Here, the synthesis and characterization of three improved nanosystems is presented based on amino functionalized hyperbranched polyglycerol (hPG; M(w) = 16.8 kDa) as potential copper(II) chelators. The ligands, N-methyl-N-picolylglycine amide, 2,6-pyridine dicarboxylic acid monoamide, and cyclam tetraacetic acid (TETA) monoamide, are covalently attached to the polymer with amide bonds. In this paper, the Cu(II) loading capacity, the stability of the Cu(II)-loaded carriers at different pHs, with competing ligands and in human serum, as well as the transport of Cu(II) in biological systems are investigated. For the first time, a different cytotoxicity of functionalized polymer nanoparticles with and without Cu(II) is observed. The cyclam-based carrier combines the highest loading capacity (29 Cu ions/nanoparticle), best stability with respect to pH and EDTA (45% remaining Cu after 24 h), lowest cytotoxicity (IC50 > 100 × 10(-6) M (unloaded), 1500 × 10(-6) M Cu(II); Cu:carrier 29:1), and the highest stability in human serum.


Subject(s)
Chelating Agents , Copper , Drug Carriers , Glycerol , Nanoparticles/chemistry , Polymers , Chelating Agents/chemistry , Chelating Agents/pharmacokinetics , Copper/chemistry , Copper/pharmacokinetics , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Glycerol/chemistry , Glycerol/pharmacokinetics , Humans , Hydrogen-Ion Concentration , Polymers/chemistry , Polymers/pharmacokinetics , Serum/chemistry
5.
Bioconjug Chem ; 26(5): 906-18, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25891152

ABSTRACT

Dendritic polyglycerol sulfate (dPGS) is a biocompatible, bioactive polymer which exhibits anti-inflammatory activity in vivo and thus represents a promising candidate for therapeutic and diagnostic applications. To investigate the in vivo pharmacokinetics in detail, dPGS with a molecular weight of approx. 10 kDa was radiolabeled with (3)H and (64)Cu, and evaluated by performing biodistribution studies and small animal positron emission tomography (PET). (3)H-labeling was accomplished by an oxidation-reduction process with sodium periodate and [(3)H]-borohydride. (64)Cu-labeling was achieved by conjugation of isothiocyanate- or maleimide-functionalized copper(II)-chelating ligands based on 1,4-bis(2-pyridinylmethyl)-1,4,7-triazacyclononane (DMPTACN) to an amino functionalized dPGS scaffold, followed by reaction with an aqueous solution containing (64)CuCl2. Independent biodistribution by radioimaging and PET imaging studies with healthy mice and rats showed that the neutral dPG was quantitatively renally eliminated, whereas the polysulfated analogues accumulated mainly in the liver and spleen. Small amounts of the dPGS derivatives were slowly excreted via the kidneys. The degree of uptake by the reticuloendothelial system (RES) was similar for dPGS with 40% or 85% sulfation, and surface modification of the scaffold with the DMPTACN chelator did not appear to significantly affect the biodistribution profile. On the basis of our data, the applicability of bioactive dPGS as a therapeutic agent might be limited due to organ accumulation even after 3 weeks. The inert characteristics and clearance of the neutral polymer, however, emphasizes the potential of dPG as a multifunctional scaffold for various nanomedical applications.


Subject(s)
Copper Radioisotopes/chemistry , Dendrimers/chemical synthesis , Dendrimers/pharmacokinetics , Glycerol/chemistry , Polymers/chemistry , Sulfates/chemistry , Tritium/chemistry , Animals , Aza Compounds/chemistry , Chelating Agents/chemistry , Chemistry Techniques, Synthetic , Dendrimers/chemistry , Drug Stability , Female , Isotope Labeling , Mice , Piperidines/chemistry , Positron-Emission Tomography , Radiochemistry , Rats , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...