Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(2): 1114-1122, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38174259

ABSTRACT

In recent days, biogenic and green approaches for synthesizing nanostructures have gained much attention in biological and biomedical applications. Endophytic fungi have been recognized to produce several important biomolecules for use in various fields. The present work describes the use of endophytic fungi isolated from Berberis aristata for the synthesis of multi-twinned silver nanoparticles (MT-AgNPs) and their successful applications in antimicrobial and antimalarial studies. TEM images reveal the formation of multi-twined structures in the synthesized silver nanoparticles. The synthesized MT-AgNPs have shown excellent antibacterial activities against five opportunistic bacteria, viz. Bacillus subtilis (MTCC 441), Pseudomonas aeruginosa (MTCC 424), Escherichia coli (MTCC 443), Klebsiella pneumonia (MTCC 3384), and Aeromonas salmonicida (MTCC 1522). The synthesized MT-AgNPs also exhibit interesting antimalarial activities against Plasmodium falciparum parasites (3D7 strain) by displaying 100% inhibition at a concentration of 1 µg mL-1 against the malaria parasite P. falciparum 3D7. Overall, the results describe a green method for the production of twinned-structured nanoparticles and their potential to be applied in the biomedical, pharmaceutical, food preservation, and packaging industries.

2.
J Mater Chem B ; 11(21): 4785-4798, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37190982

ABSTRACT

Magnetic nanoparticles (MNPs) have captivated the scientific community towards biomedical applications owing to their numerous distinctive physio-chemical properties. In this work, cobalt ferrite (CFNPs) and iron oxide nanoparticles (IONPs) were synthesized using the thermal decomposition method and then functionalized with polyacrylic acid (PAA) for aqueous dispersion. Associated techniques, namely TEM, FESEM, DLS, XRD, and VSM, were used to characterize the synthesized nanoparticles. We also investigated the light-induced and magnetic-field-induced hyperthermia properties of the PAA-functionalized MNPs. It was found that the PAA-CFNPs show a high specific absorption rate (SAR) compared with the PAA-IONPs. Since blood plasma is essential for the delivery and targeting of drugs, studying biological interactions is crucial for effective therapeutic use. Therefore, we performed physical and in silico studies to probe into the mechanistic interaction of CFNPs and IONPs with human hemoglobin. From these studies, we inferred the successful binding between the nanoparticles and protein. Preliminary in vitro cytocompatibility and photothermal toxicity studies in breast cancer (MCF-7) cells treated with the nanoparticles revealed a low dark toxicity and significant laser-induced photothermal toxicity.


Subject(s)
Hyperthermia, Induced , Humans , Hyperthermia, Induced/methods , Ferric Compounds/chemistry , Magnetic Iron Oxide Nanoparticles , Hemoglobins
3.
RSC Adv ; 13(14): 9186-9194, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36950712

ABSTRACT

Bio-inspired quantum dots have received widespread attention in recent years due to their great potential for biological applications. Herein, we report a one pot hydrothermal synthesis of nitrogen-phosphorus-sulphur (NPS)-codoped carbon quantum dots from endophytic bacteria without using any additional doping precursor. The synthesized CQDs were thoroughly characterized and interestingly found to have a graphene like structure. The synthesized CQDs were then utilized in bactericidal activities against Gram-negative bacteria like Salmonella typhi, Pseudomonas aeruginosa and Gram-positive bacteria like the Bacillus subtilis strain. The strains were treated with different concentrations ranging from 5-100 µg ml-1. The 5 µg ml-1 concentration appeared to be the MIC (minimum inhibitory concentration) and 100 µg ml-1 is the MBC (minimum bactericidal concentration) maintaining a short incubation period of one hour. A simple, cost-effective and eco-friendly approach to synthesize multi-elemental doped CQDs would certainly cause the method to be used in future for diverse biological applications. As compared to the broadly used antibiotics, the developed CQDs have some added advantages including lower cytotoxicity, excellent photo-stability and high selectivity.

4.
Colloids Surf B Biointerfaces ; 217: 112640, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35752021

ABSTRACT

Assessing the interaction between microbes and nanocatalysts for finding an inclusive, proactive and deep understanding of nanoparticles-based toxicity is vital for discovering their broad range of applications. Palladium based photocatalysts owing to their unique fundamental characteristics and brilliant physicochemical potential have gained immense interest in environment remediation as disinfection system. In the present study, we report synthesis of a novel palladium nanoparticles decorated bismuth oxybromide (Pd/BiOBr) nanostructures using an energy efficient solution-based method, having excellent photocatalytic antibacterial action. The synthesized nanomaterials was thoroughly characterized using various analytical techniques. The photocatalytic antibacterial efficiency of Pd/BiOBr was evaluated against some common pathogenic strains of Gram-positive and Gram-negative bacteria (Pseudomonas fluorescens, Pseudomonas aeruginosa, Escherichia coli, Aeromonas salmonicida, Salmonella typhimurium, Klebsiella pneumoniae, Bacillus subtilis). In our results Pd/BiOBr showed excellent photocatalytic disinfection efficacy with > 99.9% bacterial inactivation. A very low concentration of Pd/BiOBr (0.5 µg/mL) effectively inhibited the bacterial growth in response to just 2 h of visible light irradiation, while 1 µg/mL of Pd/BiOBr completely killed all the tested bacterial strains proving their magnificent bactericidal potential. The developed materials with exceptional antibacterial broad range efficiency can be used in different photocatalytic disinfection systems including water purification systems, biofilm exclusion and combating differential antibiotic resistance.


Subject(s)
Metal Nanoparticles , Palladium , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bismuth/chemistry , Bismuth/pharmacology , Catalysis , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria , Light , Palladium/pharmacology
5.
J Biosci Bioeng ; 121(3): 299-302, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26296531

ABSTRACT

The current paper has elaborated the efficient utilization of non-edible oil seed cakes (NEOC), by-products of the bio-diesel extraction process to develop a herbal and novel mosquitocidal composition against the Aedes aegypti larvae. The composition consisted of botanical active ingredients, inerts, burning agents and preservatives; where the botanical active ingredients were karanja (Pongamia glabra) cake powder and jatropha (Jatropha curcas) cake powder, products left after the extraction of oil from karanja and jatropha seed. The percentage mortality value recorded for the combination with concentration, karanja cake powder (20%) and jatropha cake powder (20%), 1:1 was 96%. The coil formulations developed from these biodiesel by-products are of low cost, environmentally friendly and are less toxic than the synthetic active ingredients.


Subject(s)
Aedes/drug effects , Biofuels/analysis , Insecticides/chemistry , Insecticides/pharmacology , Mosquito Control/methods , Aedes/growth & development , Animals , Biofuels/economics , Female , Insecticides/chemical synthesis , Insecticides/economics , Jatropha/chemistry , Larva/drug effects , Mosquito Control/economics , Pongamia/chemistry , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...