Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Radiology ; 309(1): e230984, 2023 10.
Article in English | MEDLINE | ID: mdl-37874235

ABSTRACT

Background Gadolinium retention has been observed in organs of patients with normal renal function; however, the biodistribution and speciation of residual gadolinium is not well understood. Purpose To compare the pharmacokinetics, distribution, and speciation of four gadolinium-based contrast agents (GBCAs) in healthy rats using MRI, mass spectrometry, elemental imaging, and electron paramagnetic resonance (EPR) spectroscopy. Materials and Methods In this prospective animal study performed between November 2021 and September 2022, 32 rats received a dose of gadoterate, gadoteridol, gadobutrol, or gadobenate (2.0 mmol/kg) for 10 consecutive days. GBCA-naive rats were used as controls. Three-dimensional T1-weighted ultrashort echo time images and R2* maps of the kidneys were acquired at 3, 17, 34, and 52 days after injection. At 17 and 52 days after injection, gadolinium concentrations in 23 organ, tissue, and fluid specimens were measured with mass spectrometry; gadolinium distribution in the kidneys was evaluated using elemental imaging; and gadolinium speciation in the kidney cortex was assessed using EPR spectroscopy. Data were assessed with analysis of variance, Kruskal-Wallis test, analysis of response profiles, and Pearson correlation analysis. Results For all GBCAs, the kidney cortex exhibited higher gadolinium retention at 17 days after injection than all other specimens tested (mean range, 350-1720 nmol/g vs 0.40-401 nmol/g; P value range, .001-.70), with gadoteridol showing the lowest level of retention. Renal cortex R2* values correlated with gadolinium concentrations measured ex vivo (r = 0.95; P < .001), whereas no associations were found between T1-weighted signal intensity and ex vivo gadolinium concentration (r = 0.38; P = .10). EPR spectroscopy analysis of rat kidney cortex samples showed that all GBCAs were primarily intact at 52 days after injection. Conclusion Compared with other macrocyclic GBCAs, gadoteridol administration led to the lowest level of retention. The highest concentration of gadolinium was retained in the kidney cortex, but T1-weighted MRI was not sensitive for detecting residual gadolinium in this tissue. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Tweedle in this issue.


Subject(s)
Contrast Media , Organometallic Compounds , Rats , Humans , Animals , Gadolinium/pharmacokinetics , Tissue Distribution , Prospective Studies , Brain , Gadolinium DTPA , Magnetic Resonance Imaging/methods
2.
J Am Chem Soc ; 145(38): 20825-20836, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37589185

ABSTRACT

During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small-molecule magnetic resonance probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis non-invasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that, for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, makes them strong candidates for clinical translation.


Subject(s)
2-Aminoadipic Acid , Aldehydes , Mice , Animals , 2-Aminoadipic Acid/chemistry , Magnetic Resonance Imaging , Lung
3.
bioRxiv ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37131719

ABSTRACT

During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small molecule magnetic resonance (MR) probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis noninvasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, make them strong candidates for clinical translation.

4.
Sci Transl Med ; 14(663): eabq6297, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36130015

ABSTRACT

Liver fibrosis plays a critical role in the evolution of most chronic liver diseases and is characterized by a buildup of extracellular matrix, which can progress to cirrhosis, hepatocellular carcinoma, liver failure, or death. Now, there are no noninvasive methods available to accurately assess disease activity (fibrogenesis) to sensitively detect early onset of fibrosis or to detect early response to treatment. Here, we hypothesized that extracellular allysine aldehyde (LysAld) pairs formed by collagen oxidation during active fibrosis could be a target for assessing fibrogenesis with a molecular probe. We showed that molecular magnetic resonance imaging (MRI) using an extracellular probe targeting these LysAld pairs acts as a noninvasive biomarker of fibrogenesis and demonstrated its high sensitivity and specificity in detecting fibrogenesis in toxin- and dietary-induced mouse models, a cholestasis rat model of liver fibrogenesis, and in human fibrotic liver tissues. Quantitative molecular MRI was highly correlated with fibrogenesis markers and enabled noninvasive detection of early onset fibrosis and response to antifibrotic treatment, showing high potential for clinical translation.


Subject(s)
Aldehydes , Liver , Animals , Biomarkers , Collagen , Fibrosis , Humans , Liver/diagnostic imaging , Liver/pathology , Liver Cirrhosis/pathology , Magnetic Resonance Imaging , Mice , Molecular Probes , Rats
5.
J Am Chem Soc ; 144(36): 16553-16558, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35998740

ABSTRACT

Liver fibrogenesis is accompanied by upregulation of lysyl oxidase enzymes, which catalyze oxidation of lysine ε-amino groups on the extracellular matrix proteins to form the aldehyde containing amino acid allysine (LysAld). Here, we describe the design and synthesis of novel manganese-based MRI probes with high signal amplification for imaging liver fibrogenesis. Rational design of a series of stable hydrazine-equipped manganese MRI probes gives Mn-2CHyd with the highest affinity and turn-on relaxivity (4-fold) upon reaction with LysAld. A dynamic PET-MRI study using [52Mn]Mn-2CHyd showed low liver uptake of the probe in healthy mice. The ability of the probe to detect liver fibrogenesis was then demonstrated in vivo in CCl4-injured mice. This study enables further development and application of manganese-based hydrazine-equipped probes for imaging liver fibrogenesis.


Subject(s)
Contrast Media , Manganese , Animals , Contrast Media/chemistry , Hydrazines , Liver/diagnostic imaging , Magnetic Resonance Imaging/methods , Manganese/chemistry , Mice
6.
Article in English | MEDLINE | ID: mdl-34531932

ABSTRACT

BACKGROUND: In our earlier work, we identified microRNA-10b (miR10b) as a master regulator of the viability of metastatic tumor cells. This knowledge allowed us to design a miR10b-targeted therapeutic consisting of anti-miR10b and ultrasmall iron oxide magnetic nanoparticles (MN), termed MN-anti-miR10b. In mouse models of breast cancer, we demonstrated that MN-anti-miR10b caused durable regressions of established metastases with no evidence of systemic toxicity. As a first step towards translating MN-anti-miR10b for the treatment of metastatic breast cancer, we needed to determine if MN-anti-miR10b, which is so effective in mice, will also accumulate in human metastases. RESULTS: In this study, we devised a method to efficiently radiolabel MN-anti-miR10b with Cu-64 (64Cu) and evaluated the pharmacokinetics and biodistribution of the radiolabeled product at two different doses: a therapeutic dose, referred to as macrodose, corresponding to 64Cu-MN-anti-miR10b co-injected with non-labeled MN-anti-miR10b, and a tracer level dose of 64Cu-MN-anti-miR10b, referred to as microdose. In addition, we evaluated the uptake of 64Cu-MN-anti-miR10b by metastatic lesions using both in vivo and ex vivo positron emission tomography-magnetic resonance imaging (PET-MRI). A comparable distribution of the therapeutic was observed after administration of a microdose or macrodose. Uptake of the therapeutic by metastatic lymph nodes, lungs, and bone was also demonstrated by PET-MRI with a significantly higher PET signal than in the same organs devoid of metastatic lesions. CONCLUSION: Our results demonstrate that PET-MRI following a microdose injection of the agent will accurately reflect the innate biodistribution of the therapeutic. The tools developed in the present study lay the groundwork for the clinical testing of MN-anti-miR10b and other similar therapeutics in patients with cancer.

7.
Sci Rep ; 11(1): 2844, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531596

ABSTRACT

RNA interference represents one of the most appealing therapeutic modalities for cancer because of its potency, versatility, and modularity. Because the mechanism is catalytic and affects the expression of disease-causing antigens at the post-transcriptional level, only small amounts of therapeutic need to be delivered to the target in order to exert a robust therapeutic effect. RNA interference is also advantageous over other treatment modalities, such as monoclonal antibodies or small molecules, because it has a much broader array of druggable targets. Finally, the complementarity of the genetic code gives us the opportunity to design RNAi therapeutics using computational, rational approaches. Previously, we developed and tested an RNAi-targeted therapeutic, termed MN-anti-miR10b, which was designed to inhibit the critical driver of metastasis and metastatic colonization, miRNA-10b. We showed in animal models of metastatic breast cancer that MN-anti-miR10b accumulated into tumors and metastases in the lymph nodes, lungs, and bone, following simple intravenous injection. We also found that treatment incorporating MN-anti-miR10b was effective at inhibiting the emergence of metastases and could regress already established metastases in the lymph nodes, lungs, and bone. In the present study, we extend the application of MN-anti-miR10b to a model of breast cancer metastatic to the brain. We demonstrate delivery to the metastatic lesions and obtain evidence of a therapeutic effect manifested as inhibition of metastatic progression. This investigation represents an additional step towards translating similar RNAi-targeted therapeutics for the systemic treatment of metastatic disease.


Subject(s)
Brain Neoplasms/therapy , Breast Neoplasms/therapy , MicroRNAs/antagonists & inhibitors , RNA Interference , RNAi Therapeutics/methods , Animals , Brain Neoplasms/genetics , Brain Neoplasms/secondary , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Female , Humans , Mice , MicroRNAs/genetics , Xenograft Model Antitumor Assays
8.
Invest Radiol ; 56(4): 261-270, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33136686

ABSTRACT

OBJECTIVES: Mn-PyC3A is an experimental manganese (Mn)-based extracellular fluid magnetic resonance imaging (MRI) contrast agent that is being evaluated as a direct replacement for clinical gadolinium (Gd)-based contrast agents. The goals of this study were to use simultaneous positron emission tomography (PET)-MRI to (1) compare the whole-body pharmacokinetics, biodistribution, and elimination of Mn-PyC3A with the liver-specific contrast agent mangafodipir (Mn-DPDP), (2) determine the pharmacokinetics and fractional excretion of Mn-PyC3A in a rat model of renal impairment, and (3) compare whole-body elimination of Mn-PyC3A to gadoterate (Gd-DOTA) in a rat model of renal impairment. METHODS: Mn-PyC3A and Mn-DPDP were radiolabeled with the positron emitting isotope Mn-52 via Mn2+ exchange with 52MnCl2. Dynamic simultaneous PET-MRI was used to measure whole-body pharmacokinetics and biodistribution of Mn-52 immediately and out to 7 days after an intravenous 0.2 mmol/kg dose of [52Mn]Mn-PyC3A to normal or to 5/6 nephrectomy rats or a 0.01 mmol/kg dose of [52Mn]Mn-DPDP to normal rats. The fractional excretion and 1- and 7-day biodistribution in rats after the injection of 2.0 mmol/kg [52Mn]Mn-PyC3A (n = 11 per time point) or 2.0 mmol/kg Gd-DOTA (n = 8 per time point) were quantified by gamma counting or Gd elemental analysis, respectively. Comparisons of Mn-PyC3A pharmacokinetics and in vivo biodistribution in normal and 5/6 nephrectomy rats and comparisons of ex vivo Mn versus Gd biodistribution data in 5/6 nephrectomy were made with an unpaired t test. RESULTS: Dynamic PET-MRI data demonstrate that both [52Mn]Mn-PyC3A and [52Mn]Mn-DPDP were eliminated by mixed renal and hepatobiliary elimination but that a greater fraction of [52Mn]Mn-PyC3A was eliminated by renal filtration. Whole-body PET images show that Mn-52 from [52Mn]Mn-PyC3A was efficiently eliminated from the body, whereas Mn-52 from [52Mn]Mn-DPDP was retained throughout the body. The blood elimination half-life of [52Mn]Mn-PyC3A in normal and 5/6 nephrectomy rats was 13 ± 3.5 minutes and 23 ± 12 minutes, respectively (P = 0.083). Area under the curve between 0 and 60 minutes postinjection (AUC0-60) in the bladder of normal and 5/6 nephrectomy rats was 2600 ± 1700 %ID/cc*min and 750 ± 180 %ID/cc*min, respectively (P = 0.024), whereas AUC0-60 in the liver of normal and 5/6 nephrectomy rats was 33 ± 13 %ID/cc*min and 71 ± 16 %ID/cc*min, respectively (P = 0.011), indicating increased hepatobiliary elimination in 5/6 nephrectomy rats. The %IDs of Mn from [52Mn]Mn-PyC3A and Gd from Gd-DOTA recovered from 5/6 nephrectomy rats 1 day after injection were 2.0 ± 1.1 and 1.3 ± 0.34, respectively (P = 0.10) and 7 days after injection were 0.14 ± 0.11 and 0.41 ± 0.24, respectively (P = 0.0041). CONCLUSIONS: Mn-PyC3A has different pharmacokinetics and is more efficiently eliminated than Mn-DPDP in normal rats. Mn-PyC3A is efficiently eliminated from both normal and 5/6 nephrectomy rats, with increased fractional hepatobiliary excretion from 5/6 nephrectomy rats. Mn-PyC3A is more completely eliminated than Gd-DOTA from 5/6 nephrectomy rats after 7 days.


Subject(s)
Manganese , Radioisotopes , Animals , Contrast Media , Diamines , Magnetic Resonance Imaging , Manganese Compounds , Picolinic Acids , Positron-Emission Tomography , Rats , Tissue Distribution
9.
Sci Rep ; 10(1): 1970, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029822

ABSTRACT

Chemotherapy, a major cancer treatment approach, suffers seriously from multidrug resistance (MDR), generally caused by innate DNA repair proteins that reverse the DNA modification by anti-cancer therapeutics or trans-membrane efflux proteins that pump anti-cancer therapeutics out of the cytosol. This project focused on finding microRNAs that can regulate MDR proteins by managing corresponding mRNA levels through post-transcriptional regulation based on nucleotide sequence matching. Screening was done with bioinformatics databases for unpublished/unexplored microRNAs with high nucleotide sequence correspondence to two representative MDR proteins, MGMT (a DNA repair protein) and ABCB1 (an efflux protein), revealing microRNA-4539 and microRNA-4261 respectively. To investigate the enhancement of chemotherapeutics in cancer cells, high MGMT expressing glioblastoma (T98G) and a high ABCB1 expressing triple-negative breast cancer cell line (MDA-MB-231-luc) were treated with varying concentrations of chemotherapeutics and corresponding miRNAs. Newly identified MDR-related miRNAs (MDRmiRs) enhanced the response to anti-cancer therapeutics and resulted in effective cell death. In this study, we demonstrated that therapeutic miRNAs could be identified based on the nucleotide sequence matching of miRNAs to targeted mRNA and the same approach could be employed for the screening of therapeutic candidates to regulate specific target proteins in diverse diseases.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Antineoplastic Combined Chemotherapy Protocols/pharmacology , MicroRNAs/analysis , Neoplasms/drug therapy , Oligonucleotides/therapeutic use , ATP Binding Cassette Transporter, Subfamily B/metabolism , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Computational Biology , DNA Repair/drug effects , Drug Resistance, Multiple/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , MicroRNAs/genetics , Neoplasms/genetics , Oligonucleotides/genetics , Oligonucleotides/pharmacology
10.
PLoS One ; 14(12): e0226356, 2019.
Article in English | MEDLINE | ID: mdl-31834924

ABSTRACT

Prior research has shown that critical differences between non-metastatic and metastatic tumor cells are at the level of microRNA. Consequently, harnessing these molecules for the treatment of metastatic cancer could have significant clinical impact. In the present study, we set out to identify metastasis-specific microRNAs which drive metastatic colonization of distant organs. Using a murine model of metastatic breast cancer, we employed a directed approach in which we screened for microRNAs that are differentially expressed between the primary tumors and metastatic lesions but concordantly expressed in all of the metastatic lesions irrespective of the tissue that is colonized. Of the identified targets, we focused on miR-710, which was consistently and significantly downregulated in the metastatic lesions relative to the primary tumors. The level of downregulation was independent of the distant organ that is involved, suggesting that miR-710 plays a fundamental role in metastatic colonization. Computational target prediction suggested a pleiotropic role for miR-710 in apoptosis, migration and invasion, and stemness. Using a previously validated oligonucleotide delivery system, we introduced miR-710 mimics into 4T1 metastatic breast adenocarcinoma cells and assessed the resultant phenotypic effects. We demonstrated significant inhibition of cell viability, migration, and invasion. We also showed that the treatment profoundly enhanced cell senescence, reduced stemness, and influenced markers of epithelial to mesenchymal transition, as evidenced by enhanced E-cadherin and reduced vimentin expression. This knowledge represents a first step towards harnessing a similar approach to discover novel microRNA targets with therapeutic potential in metastasis.


Subject(s)
Carcinogenesis/pathology , Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Mammary Neoplasms, Animal/pathology , MicroRNAs/genetics , Neoplastic Stem Cells/pathology , Animals , Apoptosis , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Proliferation , Female , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/metabolism , Mice , Mice, Inbred BALB C , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplastic Stem Cells/metabolism , Tumor Cells, Cultured
11.
Sci Rep ; 9(1): 4712, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30886310

ABSTRACT

The recent past has seen impressive progress in the treatment of various malignancies using immunotherapy. One of the most promising approaches involves immune checkpoint inhibitors. However, the clinical results with these agents have demonstrated variability in the response. Pancreatic cancer, in particular, has proven resistant to initial immunotherapy approaches. Here, we describe an alternative strategy that relies on combining gemcitabine and a novel programmed death-ligand 1 (PD-L1) inhibitor, termed MN-siPDL1. MN-siPDL1 incorporates small interfering RNA against PD-L1 (siPDL1) conjugated to a magnetic nanocarrier (MN). We show that noninvasive magnetic resonance imaging (MRI) could be used to monitor therapeutic response. Combination therapy consisting of gemcitabine and MN-siPDL1 in a syngeneic murine pancreatic cancer model resulted in a significant reduction in tumor growth and an increase in survival. Following optimization, a 90% reduction in tumor volume was achieved 2 weeks after the beginning of treatment. Whereas 100% of the control animals had succumbed to their tumors by week 6 after the beginning of treatment, there was no mortality in the experimental group by week 5, and 67% of the experimental animals survived for 12 weeks. This method could provide therapeutic benefit against an intractable disease for which there are no effective treatments and which is characterized by a mere 1% 5-year survival.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , Carcinoma, Pancreatic Ductal/drug therapy , Drug Carriers/chemistry , Immunotherapy/methods , Pancreatic Neoplasms/drug therapy , RNA, Small Interfering/administration & dosage , Animals , Antimetabolites, Antineoplastic/pharmacology , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor/transplantation , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Monitoring/methods , Female , Humans , Magnetic Resonance Imaging , Magnetite Nanoparticles/chemistry , Maximum Tolerated Dose , Mice , Pancreas/diagnostic imaging , Pancreas/drug effects , Pancreas/immunology , Pancreas/pathology , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , RNA Interference , RNA, Small Interfering/genetics , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Gemcitabine
12.
Sci Rep ; 7: 45060, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28322342

ABSTRACT

Treatment of stage IV metastatic breast cancer patients is limited to palliative options and represents an unmet clinical need. Here, we demonstrate that pharmacological inhibition of miRNA-10b - a master regulator of metastatic cell viability - leads to elimination of distant metastases in a mouse model of metastatic breast cancer. This was achieved using the miRNA-10b inhibitory nanodrug, MN-anti-miR10b, which consists of magnetic nanoparticles, conjugated to LNA-based miR-10b antagomirs. Intravenous injection of MN-anti-miR10b into mice bearing lung, bone, and brain metastases from breast cancer resulted in selective accumulation of the nanodrug in metastatic tumor cells. Weekly treatments of mice with MN-anti-miR-10b and low-dose doxorubicin resulted in complete regression of pre-existing distant metastases in 65% of the animals and a significant reduction in cancer mortality. These observations were supported by dramatic reduction in proliferation and increase in apoptosis in metastatic sites. On a molecular level, we observed a significant increase in the expression of HOXD10, which is a known target of miRNA-10b. These results represent first steps into the uncharted territory of therapy targeted to the metastatic niche.


Subject(s)
Breast Neoplasms/pathology , Breast Neoplasms/therapy , Models, Biological , Molecular Targeted Therapy , Animals , Apoptosis/genetics , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/etiology , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Doxorubicin/administration & dosage , Drug Delivery Systems , Female , Humans , Mice , MicroRNAs/administration & dosage , MicroRNAs/genetics , Nanomedicine , Nanoparticles/chemistry , Neoplasm Metastasis , Neoplasm Staging , Optical Imaging , Xenograft Model Antitumor Assays
13.
Diabetes Metab Res Rev ; 33(5)2017 07.
Article in English | MEDLINE | ID: mdl-28032446

ABSTRACT

BACKGROUND: The absence of reliable drug delivery systems to pancreatic islet cells hampers efficient treatment of type 1 diabetes. Nanoparticle delivery systems equipped with imaging capabilities could enable selective delivery to pancreatic islet cells. Biodistribution of nanoparticles is defined by several factors including the mode of administration, which determines accumulation in various organs. METHODS: In this study, we tested whether intrapancreatic ductal injection of magnetic nanoparticles would result in efficient cellular uptake by pancreatic islet cells. Dextran-coated iron oxide nanoparticles labeled with the near infrared fluorescent dye Cy5.5 were injected into the intrapancreatic ducts of streptozotocin-induced diabetic and healthy mice. To monitor the distribution of the nanoparticles, we performed in vivo magnetic resonance imaging followed by optical imaging and histology. RESULTS: Both imaging modalities demonstrated accumulation of the nanoparticles in the pancreas. However, histology revealed a high accumulation of nanoparticles in the insulin-producing cells in the pancreata of diabetic animals. By contrast, in nondiabetic controls, nanoparticles were mainly restricted to nonendocrine tissues. CONCLUSIONS: Our results demonstrate that pancreatic ductal injection accompanied by image guidance could serve as an alternative pathway for nanoparticle delivery. We expect to utilize this intraductal delivery method for theranostic applications in type 1 diabetes.


Subject(s)
Diabetes Mellitus, Experimental/pathology , Drug Delivery Systems , Islets of Langerhans/metabolism , Magnetic Resonance Imaging/methods , Molecular Imaging/methods , Nanoparticles/administration & dosage , Pancreas/metabolism , Animals , Carbocyanines/chemistry , Diabetes Mellitus, Experimental/therapy , Female , Islets of Langerhans/pathology , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Pancreas/pathology , Tissue Distribution
14.
Int J Cancer ; 139(3): 712-8, 2016 08 01.
Article in English | MEDLINE | ID: mdl-26996122

ABSTRACT

The underglycosylated mucin 1 tumor antigen (uMUC1) is a biomarker that forecasts the progression of adenocarcinomas. In this study, we evaluated the utility of a dual-modality molecular imaging approach based on targeting uMUC1 for monitoring chemotherapeutic response in a transgenic murine model of pancreatic cancer (KCM triple transgenic mice). An uMUC1-specific contrast agent (MN-EPPT) was synthesized for use with magnetic resonance imaging (MRI) and fluorescence optical imaging. It consisted of dextran-coated iron oxide nanoparticles conjugated to the near infrared fluorescent dye Cy5.5 and to a uMUC1-specific peptide (EPPT). KCM triple transgenic mice were given gemcitabine as chemotherapy while control animals received saline injections following the same schedule. Changes in uMUC1 levels following chemotherapy were monitored using T2-weighted MRI and optical imaging before and 24 hr after injection of the MN-EPPT. uMUC1 expression in tumors from both groups was evaluated by histology and qRT-PCR. We observed that the average delta-T2 in the gemcitabine-treated group was significantly reduced compared to the control group indicating lower accumulation of MN-EPPT, and correspondingly, a lower level of uMUC1 expression. In vivo optical imaging confirmed the MRI findings. Fluorescence microscopy of pancreatic tumor sections showed a lower level of uMUC1 expression in the gemcitabine-treated group compared to the control, which was confirmed by qRT-PCR. Our data proved that changes in uMUC1 expression after gemcitabine chemotherapy could be evaluated using MN-EPPT-enhanced in vivo MR and optical imaging. These results suggest that the uMUC1-targeted imaging approach could provide a useful tool for the predictive assessment of therapeutic response.


Subject(s)
Antineoplastic Agents/pharmacology , Molecular Imaging , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/metabolism , Animals , Cell Line, Tumor , Contrast Media , Disease Models, Animal , Female , Humans , Magnetic Resonance Imaging , Male , Mice , Mice, Transgenic , Molecular Imaging/methods , Mucin-1/metabolism , Optical Imaging/methods , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Reproducibility of Results , Treatment Outcome
15.
Mol Imaging Biol ; 18(1): 70-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25987466

ABSTRACT

PURPOSE: The development of tools for the analysis of microRNA (miRNA) function in tumors can advance our diagnostic and prognostic capabilities. Here, we describe the development of technology for the profiling of miRNA expression in the tumors of live animals. PROCEDURES: The approach is based on miRNA nanosensors consisting of sensor oligonucleotides conjugated to magnetic nanoparticles for systemic delivery. Feasibility was demonstrated for the detection of miR-10b, implicated in epithelial to mesenchymal transition and the development of metastasis. The miR-10b nanosensor was tested in vivo in two mouse models of cancer. In the first model, mice were implanted subcutaneously with MDA-MB-231-luc-D3H2LN tumors, in which miR-10b was inhibited. In the second model, mice were implanted bilaterally with metastatic MDA-MB-231 and nonmetastatic MCF-7 cells. The nanosensors were injected intravenously, and fluorescence intensity in the tumors was monitored over time. RESULTS: We showed that the described nanosensors are capable of discriminating between tumors based on their expression of miR-10b. Radiant efficiency was higher in the miR-10b-active tumors than in the miR-10b-inhibited tumors and in the MDA-MB-231 tumors relative to the MCF-7 tumors. CONCLUSIONS: The described technology provides an important tool that could be used to answer questions about microRNA function in cancer.


Subject(s)
Biosensing Techniques/methods , MicroRNAs/metabolism , Nanoparticles/chemistry , Neoplasms/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Fluorescence , Gene Expression Regulation, Neoplastic , Humans , Mice, Nude , MicroRNAs/genetics , Oligonucleotides/metabolism , Xenograft Model Antitumor Assays
16.
Cancer Res ; 75(20): 4407-15, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26359455

ABSTRACT

The therapeutic promise of microRNA (miRNA) in cancer has yet to be realized. In this study, we identified and therapeutically exploited a new role for miR-10b at the metastatic site, which links its overexpression to tumor cell viability and proliferation. In the protocol developed, we combined a miR-10b-inhibitory nanodrug with low-dose anthracycline to achieve complete durable regressions of metastatic disease in a murine model of metastatic breast cancer. Mechanistic investigations suggested a potent antiproliferative, proapoptotic effect of the nanodrug in the metastatic cells, potentiated by a cell-cycle arrest produced by administration of the low-dose anthracycline. miR-10b was overexpressed specifically in cells with high metastatic potential, suggesting a role for this miRNA as a metastasis-specific therapeutic target. Taken together, our results implied the existence of pathways that regulate the viability and proliferation of tumor cells only after they have acquired the ability to grow at distant metastatic sites. As illustrated by miR-10b targeting, such metastasis-dependent apoptotic pathways would offer attractive targets for further therapeutic exploration.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Breast Neoplasms/genetics , Doxorubicin/administration & dosage , MicroRNAs/genetics , Nanoparticles , Animals , Apoptosis/genetics , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Disease Models, Animal , Female , Gene Knockout Techniques , Humans , Mice , Neoplasm Metastasis , Phenotype , Tumor Burden/drug effects , Tumor Burden/genetics , Xenograft Model Antitumor Assays
17.
Diabetes ; 63(5): 1465-74, 2014 May.
Article in English | MEDLINE | ID: mdl-24458362

ABSTRACT

Noninvasive assessment of pancreatic ß-cell mass would tremendously aid in managing type 1 diabetes (T1D). Toward this goal, we synthesized an exendin-4 conjugated magnetic iron oxide-based nanoparticle probe targeting glucagon-like peptide 1 receptor (GLP-1R), which is highly expressed on the surface of pancreatic ß-cells. In vitro studies in ßTC-6, the ß-cell line, showed specific accumulation of the targeted probe (termed MN-Ex10-Cy5.5) compared with nontargeted (termed MN-Cy5.5). In vivo magnetic resonance imaging showed a significant transverse relaxation time (T2) shortening in the pancreata of mice injected with the MN-Ex10-Cy5.5 probe compared with control animals injected with the nontargeted probe at 7.5 and 24 h after injection. Furthermore, ΔT2 of the pancreata of prediabetic NOD mice was significantly higher than that of diabetic NOD mice after the injection of MN-Ex10-Cy5.5, indicating the decrease of probe accumulation in these animals due to ß-cell loss. Of note, ΔT2 of prediabetic and diabetic NOD mice injected with MN-Cy5.5 was not significantly changed, reflecting the nonspecific mode of accumulation of nontargeted probe. We believe our results point to the potential for using this agent for monitoring the disease development and response of T1D to therapy.


Subject(s)
Diabetes Mellitus, Type 1/pathology , Islets of Langerhans/pathology , Magnetite Nanoparticles , Pancreas/pathology , Receptors, Glucagon/metabolism , Animals , Cell Line, Tumor , Cell Survival , Diabetes Mellitus, Type 1/metabolism , Female , Glucagon-Like Peptide-1 Receptor , Insulinoma/metabolism , Insulinoma/pathology , Islets of Langerhans/metabolism , Magnetic Resonance Imaging , Mice , Mice, Inbred NOD , Pancreas/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology
18.
Clin Breast Cancer ; 13(2): 109-18, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23122537

ABSTRACT

INTRODUCTION: Mucin 1 antigen (MUC1) is a high-molecular-weight transmembrane glycoprotein with an aberrant expression profile in various malignancies, including breast cancer. Its increased overexpression and underglycosylation in breast cancer is associated with tumor invasiveness and metastatic potential. In this study, we took the next step toward establishing MUC1 as a potential diagnostic, prognostic, and therapeutic target by investigating its expression and posttranslational modification (glycosylation/sialylation). PATIENTS AND METHODS: In these studies we used a breast cancer tissue microarray (TMA) and fresh-frozen multistage breast cancer tissues. We analyzed in detail the expression of normal and underglycosylated/sialated MUC1 by immunohistochemical techniques, real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), and various analytic techniques. RESULTS: We found that changes in cellular localization as well as in upregulation and/or underglycosylation of MUC1 were associated with higher tumor grade. A key finding in this study was that underglycosylated MUC1 (uMUC1) overexpression and sialation were observed in tissues adjacent to tumor but identified as normal on pathology reports. CONCLUSIONS: These findings suggest that uMUC1 can indeed be used as an early diagnostic marker and provide additional insights into breast cancer management.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Breast/metabolism , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Intraductal, Noninfiltrating/metabolism , Mucin-1/metabolism , Biomarkers, Tumor/genetics , Blotting, Western , Breast/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/pathology , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Early Diagnosis , Female , Follow-Up Studies , Glycosylation , Humans , Immunoenzyme Techniques , Lymphatic Metastasis , Mucin-1/genetics , N-Acetylneuraminic Acid/metabolism , Neoplasm Staging , Neuraminidase/metabolism , Prognosis , Protein Processing, Post-Translational , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sialyltransferases/metabolism , Survival Rate , Tissue Array Analysis
19.
Magn Reson Med ; 63(3): 617-24, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20146231

ABSTRACT

One of the key challenges hindering the clinical intervention against brain cancer is defined by the inability to detect brain tumors at an early enough stage to permit effective therapy. Furthermore, the rapid growth and severe lethality of this form of cancer predicate the vital importance of monitoring the development of the pathology and its outcome after therapeutic intervention. With this in mind, we designed a novel membrane-permeant contrast agent, MN-MPAP-Cy5.5, which consists of a superparamagnetic iron oxide core, for MRI conjugated to myristoylated polyarginine peptides, as a membrane translocation module and labeled with the near-infrared dye Cy5.5 for correlative microscopy. This probe showed a remarkable uptake by U-87 human glioma cells in vitro and localized and delineated stereotactically injected tumor in vivo by MRI. Our findings suggest that the agent mediates its effects by translocation of the magnetic nanoparticles label across the leaky tumor vasculature, followed by enhanced accumulation in tumor cells. The noninvasive detection of brain tumors when they are still small represents a formidable challenge from an imaging standpoint. Our study describes an improved strategy to detect brain lesions by utilizing a contrast agent with membrane translocation properties.


Subject(s)
Brain Neoplasms/pathology , Ferric Compounds , Glioma/pathology , Image Enhancement/methods , Animals , Brain Neoplasms/metabolism , Cell Line, Tumor , Contrast Media/administration & dosage , Contrast Media/pharmacokinetics , Ferric Compounds/administration & dosage , Ferric Compounds/pharmacokinetics , Glioma/metabolism , Humans , Injections, Intralesional , Mice , Reproducibility of Results , Sensitivity and Specificity
20.
Transplantation ; 87(11): 1659-66, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19502957

ABSTRACT

OBJECTIVE: As islet transplantation begins to show promise as a clinical method, there is a critical need for reliable, noninvasive techniques to monitor islet graft survival. Previous work in our laboratory has shown that human islets labeled with a superparamagnetic iron oxide contrast agent and transplanted into mice could be detected by magnetic resonance imaging (MRI). The potential translation of these findings to the clinical situation requires validation of our methodology in a non-human primate model, which we have now carried out in baboons (Papio hamadryas) and reported here. RESEARCH DESIGN AND METHODS: For islet labeling, we adapted the Food and Drug Administration-approved superparamagnetic iron oxide contrast agent, Feridex, which is used clinically for liver imaging. After partial pancreatectomy, Feridex-labeled islets were prepared and autotransplanted underneath the renal capsule and into the liver. Longitudinal in vivo MRI at days 1, 3, 8, 16, 23, and 30 after transplantation was performed to track the islet grafts. RESULTS: The renal subcapsular islet graft was easily detectable on T2*-weighted MR images as a pocket of signal loss disrupting the contour of the kidney at the transplantation site. Islets transplanted in the liver appeared as distinct signal voids dispersed throughout the liver parenchyma. A semiautomated computational analysis of our MRI data established the feasibility of monitoring both the renal and intrahepatic grafts during the studied posttransplantation period. CONCLUSION: This study establishes a method for the noninvasive, longitudinal detection of pancreatic islets transplanted into non-human primates using a low-field clinical MRI system.


Subject(s)
Islets of Langerhans Transplantation/pathology , Liver Transplantation/pathology , Subrenal Capsule Assay/methods , Transplantation, Autologous/pathology , Animals , Apoptosis , Contrast Media , Dextrans , Ferrosoferric Oxide , Insulin/metabolism , Insulin Secretion , Iron/metabolism , Kidney , Magnetic Resonance Imaging , Magnetite Nanoparticles , Oxides , Pancreatectomy , Papio , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...