Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Eng Online ; 19(1): 65, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32814586

ABSTRACT

BACKGROUND: The progressive evolution in hip replacement research is directed to follow the principles of bone and soft tissue sparing surgery. Regarding hip implants, a renewed interest has been raised towards short uncemented femoral implants. A heterogeneous group of short stems have been designed with the aim to approximate initial, post-implantation bone strain to the preoperative levels in order to minimize the effects of stress shielding. This study aims to investigate the biomechanical properties of two distinctly designed femoral implants, the TRI-LOCK Bone Preservation Stem, a shortened conventional stem and the Minima S Femoral Stem, an even shorter and anatomically shaped stem, based on experiments and numerical simulations. Furthermore, finite element models of implant-bone constructs should be evaluated for their validity against mechanical tests wherever it is possible. In this work, the validation was performed via a direct comparison of the FE calculated strain fields with their experimental equivalents obtained using the digital image correlation technique. RESULTS: Design differences between Trilock BPS and Minima S femoral stems conditioned different strain pattern distributions. A distally shifting load distribution pattern as a result of implant insertion and also an obvious decrease of strain in the medial proximal aspect of the femur was noted for both stems. Strain changes induced after the implantation of the Trilock BPS stem at the lateral surface were greater compared to the non-implanted femur response, as opposed to those exhibited by the Minima S stem. Linear correlation analyses revealed a reasonable agreement between the numerical and experimental data in the majority of cases. CONCLUSION: The study findings support the use of DIC technique as a preclinical evaluation tool of the biomechanical behavior induced by different implants and also identify its potential for experimental FE model validation. Furthermore, a proximal stress-shielding effect was noted after the implantation of both short-stem designs. Design-specific variations in short stems were sufficient to produce dissimilar biomechanical behaviors, although their clinical implication must be investigated through comparative clinical studies.


Subject(s)
Arthroplasty, Replacement, Hip , Image Processing, Computer-Assisted , Mechanical Phenomena , Prosthesis Design/methods , Biomechanical Phenomena , Femur/diagnostic imaging , Humans , Stress, Mechanical
2.
Trials ; 20(1): 359, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31208433

ABSTRACT

BACKGROUND: Total hip replacement has recently followed a progressive evolution towards principles of bone- and soft-tissue-sparing surgery. Regarding femoral implants, different stem designs have been developed as an alternative to conventional stems, and there is a renewed interest towards short versions of uncemented femoral implants. Based on both experimental testing and finite element modeling, the proposed study has been designed to compare the biomechanical properties and clinical performance of the newly introduced short-stem Minima S, for which clinical data are lacking with an older generation stem, the Trilock Bone Preservation Stem with an established performance record in short to midterm follow-up. METHODS/DESIGN: In the experimental study, the transmission of forces as measured by cortical surface-strain distribution in the proximal femur will be evaluated using digital image correlation (DIC), first on the non-implanted femur and then on the implanted stems. Finite element parametric models of the bone, the stem and their interface will be also developed. Finite element predictions of surface strains in implanted composite femurs, after being validated against biomechanical testing measurements, will be used to assist the comparison of the stems by deriving important data on the developed stress and strain fields, which cannot be measured through biomechanical testing. Finally, a prospective randomized comparative clinical study between these two stems will be also conducted to determine (1) their clinical performance up to 2 years' follow-up using clinical scores and gait analysis (2) stem fixation and remodeling using a detailed radiographic analysis and (3) incidence and types of complications. DISCUSSION: Our study would be the first that compares not only the clinical and radiological outcome but also the biomechanical properties of two differently designed femoral implants that are theoretically classified in the same main category of cervico-metaphyseal-diaphyseal short stems. We can hypothesize that even these subtle variations in geometric design between these two stems may create different loading characteristics and thus dissimilar biomechanical behaviors, which in turn could have an influence to their clinical performance. TRIAL REGISTRATION: International Standard Randomized Controlled Trial Number, ID: ISRCTN10096716 . Retrospectively registered on May 8 2018.


Subject(s)
Arthroplasty, Replacement, Hip/methods , Finite Element Analysis , Randomized Controlled Trials as Topic , Aged , Aged, 80 and over , Biomechanical Phenomena , Femur , Humans , Middle Aged , Outcome Assessment, Health Care , Prospective Studies , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL
...