Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cancer ; 146(1): 137-149, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31093970

ABSTRACT

Combining the specificity of tumor-targeting bacteria with the sensitivity of biomarker detection would create a screening method able to detect small tumors and metastases. To create this system, we genetically modified an attenuated strain of Salmonella enterica to release a recombinant fluorescent biomarker (or fluoromarker). Salmonella expressing ZsGreen were intravenously administered to tumor-bearing mice and fluoromarker production was induced after 48 hr. The quantities and locations of bacteria and ZsGreen were measured in tumors, livers and spleens by immunofluorescence, and the plasma concentration of ZsGreen was measured using single-layer ELISA. In the plasma, the ZsGreen concentration was in the range of 0.5-1.5 ng/ml and was dependent on tumor mass (with a proportion of 0.81 ± 0.32 ng·ml-1 ·g-1 ). No adverse reaction to ZsGreen or bacteria was observed in any mice. ZsGreen was released at an average rate of 4.3 fg·CFU-1 ·hr-1 and cleared from the plasma with a rate constant of 0.259 hr-1 . ZsGreen production was highest in viable tissue (7.6 fg·CFU-1 ·hr-1 ) and lowest in necrotic tissue (0.47 fg·CFU-1 ·hr-1 ). The mass transfer rate constant from tumor to blood was 0.0125 hr-1 . Based on these measurements, this system has the capability to detect tumors as small as 0.12 g. These results demonstrate four essential mechanisms of this method: (i) preferential tumor colonization by bacteria, (ii) fluoromarker release in vivo, (iii) fluoromarker transport through tumor tissue and (iv) slow enough systemic clearance to enable measurement. This bacteria-based blood test would be minimally invasive and has the potential to identify previously undetectable microscopic tumors.


Subject(s)
Biomarkers, Tumor/metabolism , Fluorescent Dyes/metabolism , Neoplasms/diagnosis , Salmonella enterica/metabolism , Animals , Colony Count, Microbial , Enzyme-Linked Immunosorbent Assay , Female , Humans , Mice , Mice, Inbred BALB C , Salmonella enterica/isolation & purification , Sensitivity and Specificity
2.
Biotechnol Bioeng ; 113(11): 2474-84, 2016 11.
Article in English | MEDLINE | ID: mdl-27159665

ABSTRACT

Tumor heterogeneity makes cancer difficult to treat. Many small molecule cancer drugs target rapidly dividing cells on the periphery of tumors but have difficulty in penetrating deep into tumors and are ineffective at treating entire tumors. Targeting both rapidly dividing and slower growing regions of tumors is essential to effectively treat cancer. A cancer drug carrier that penetrates deep into tumors and identifies metabolically activity could supply treatment to those areas based on the local microenvironment. We hypothesized that glucose sensing bacteria could identify sugar gradients in solid tumors. To test this hypothesis, a genetic circuit was designed to trigger expression of a green fluorescent protein (GFP) reporter through the chemotaxis-osmoporin fusion protein, Trz1, a receptor for sensing glucose and ribose sugars. E. coli equipped with the Trz1-GFP expression system, were administered to an in vitro model of a continuously perfused tumor tissue that mimics systemic delivery and clearance of bacteria through a blood vessel adjacent to a solid tumor. The level of GFP expressed, per bacterium, was time independent and indicated the glucose concentration as a function of penetration depth within the microfluidic tumors. The measured glucose concentration, correlated (P-value = 2.6 × 10(-5) ) with tumor cell viability as a function of depth. Mathematical analysis predicted drug delivery by glucose-sensing bacteria would eliminate a higher percentage of the viable tumor cell population than a systemically administered drug. Glucose-sensing bacteria could deliver cancer therapies with increased drug penetration and nutrient-dependent dosing to continuously treat viable regions of cancer tissue that have a higher prevalence for metastatic dissemination. Biotechnol. Bioeng. 2016;113: 2474-2484. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cell Line, Tumor/metabolism , Cell Line, Tumor/microbiology , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Engineering/methods , Glucose/metabolism , Bacterial Vaccines , Humans , Spatio-Temporal Analysis
3.
Integr Biol (Camb) ; 7(4): 423-34, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25737274

ABSTRACT

Current tomographic methods of cancer detection have limited sensitivity and are unable to detect malignant masses smaller than half a centimeter in diameter. Mortality from tumor recurrence and metastatic disease would be reduced if small lesions could be detected earlier. To overcome this limitation, we created a detection system that combines the specificity of tumor-targeting bacteria with the sensitivity of a synthetic biomarker. Bacteria, specifically Salmonella, preferentially accumulate in tumors and microscopic metastases as small as five cell layers thick. To create tumor detecting bacteria, an attenuated strain of Salmonella was engineered to express and release the fluorescent protein ZsGreen. A single-layer antibody method was developed to measure low concentrations of ZsGreen. Engineered bacteria were administered to a microfluidic tumor-on-a-chip device to measure protein production. In culture, half of produced ZsGreen was released by viable bacteria at a rate of 87.6 fg bacterium(-1) h(-1). Single-layer antibody dots were able to detect bacterially produced ZsGreen at concentrations down to 4.5 ng ml(-1). Bacteria colonized in 0.12 mm(3) of tumor tissue in the microfluidic device released ZsGreen at a rate of 23.9 µg h(-1). This release demonstrates that ZsGreen readily diffuses through tissue and accumulates at detectable concentrations. Based on a mathematical pharmacokinetic model, the measured rate of release would enable detection of 0.043 mm(3) tumor masses, which is 2600 times smaller than the current limit of tomographic techniques. Tumor-detecting bacteria would provide a sensitive, minimally invasive method to detect tumor recurrence, monitor treatment efficacy, and identify the onset of metastatic disease.


Subject(s)
Green Fluorescent Proteins/chemistry , Microscopy, Fluorescence/methods , Neoplasms, Experimental/chemistry , Neoplasms, Experimental/pathology , Salmonella/physiology , Biomarkers/metabolism , Cell Line, Tumor , Genetic Engineering/methods , Green Fluorescent Proteins/genetics , Humans , Neoplasms, Experimental/microbiology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Reproducibility of Results , Salmonella/genetics , Sensitivity and Specificity
4.
Mol Ther ; 22(7): 1266-1274, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24590046

ABSTRACT

Bacterial therapies, designed to manufacture therapeutic proteins directly within tumors, could eliminate cancers that are resistant to other therapies. To be effective, a payload protein must be secreted, diffuse through tissue, and efficiently kill cancer cells. To date, these properties have not been shown for a single protein. The gene for Staphylococcus aureus α-hemolysin (SAH), a pore-forming protein, was cloned into Escherichia coli. These bacteria were injected into tumor-bearing mice and volume was measured over time. The location of SAH relative to necrosis and bacterial colonies was determined by immunohistochemistry. In culture, SAH was released and killed 93% of cancer cells in 24 hours. Injection of SAH-producing bacteria reduced viable tissue to 9% of the original tumor volume. By inducing cell death, SAH moved the boundary of necrosis toward the tumor edge. SAH diffused 6.8 ± 0.3 µm into tissue, which increased the volume of affected tissue from 48.6 to 3,120 µm(3). A mathematical model of molecular transport predicted that SAH efficacy is primarily dependent on colony size and the rate of protein production. As a payload protein, SAH will enable effective bacterial therapy because of its ability to diffuse in tissue, kill cells, and expand tumor necrosis.


Subject(s)
Hemolysin Proteins/metabolism , Mammary Neoplasms, Animal/therapy , Necrosis/etiology , Staphylococcus aureus/metabolism , Animals , Female , Hemolysin Proteins/genetics , Hemolysin Proteins/physiology , Humans , MCF-7 Cells , Male , Mice , Staphylococcus aureus/genetics
5.
Biotechnol Bioeng ; 111(6): 1233-45, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24415346

ABSTRACT

Targeted bacterial delivery of anticancer proteins has the ability to overcome therapeutic resistance in tumors that limits the efficacy of chemotherapeutics. The ability of bacteria to specifically target tumors allows for delivery of aggressive proteins that directly kill cancer cells and cannot be administered systemically. However, few proteins have been tested for this purpose. To identify effective molecules, we systematically sorted proteins that have been shown to cause mammalian cell death. The genes for five proteins were selected and cloned into Escherichia coli and Salmonella. Supernatant from cultures of the transformed bacteria was applied to flasks of MCF-7 mammary carcinoma cells to identify proteins that (1) were expressed, (2) secreted, and (3) rapidly killed cancer cells. Time-lapse images were taken to visualize mammalian cell morphology. Of the investigated proteins, α-hemolysin from Staphylococcus aureus (SAH) was the most promising because it was secreted, caused trauma to cellular membranes, and induced oncosis in 18 min. After exposure for 6 h, SAH decreased cell viability by 90%. In comparison, the positive control, Pseudomonas aeruginosa exotoxin A (PEA), required 11 days to achieve a similar effect, when administered at 3,000 times its LC50 . The maximum death rate induced by SAH was calculated to be a reduction in cell viability of 7.1% per min, which was 200-fold faster than the PEA control. Two proteins, Dermonecrotic Toxin and Phospholipase C were active when extracted from the bacterial cytoplasm but were not secreted. This investigation revealed for the first time SAH as a potent anticancer drug for delivery by bacteria because of its ability to be secreted in a fully functional form and aggressively kill cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Bacterial Toxins/pharmacology , Cell Survival/drug effects , Hemolysin Proteins/pharmacology , Tumor Cells, Cultured/drug effects , Cell Shape , Humans , MCF-7 Cells , Time-Lapse Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...