Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 158(20)2023 May 28.
Article in English | MEDLINE | ID: mdl-37212407

ABSTRACT

We develop and harness a phase field simulation method to study liquid filling on grooved surfaces. We consider both short-range and long-range liquid-solid interactions, with the latter including purely attractive and repulsive interactions as well as those with short-range attraction and long-range repulsion. This allows us to capture complete, partial, and pseudo-partial wetting states, demonstrating complex disjoining pressure profiles over the full range of possible contact angles as previously proposed in the literature. Applying the simulation method to study liquid filling on grooved surfaces, we compare the filling transition for the three different classes of wetting states as we vary the pressure difference between the liquid and gas phases. The filling and emptying transitions are reversible for the complete wetting case, while significant hysteresis is observed for the partial and pseudo-partial cases. In agreement with previous studies, we also show that the critical pressure for the filling transition follows the Kelvin equation for the complete and partial wetting scenarios. Finally, we find the filling transition can display a number of distinct morphological pathways for the pseudo-partial wetting cases, as we demonstrate here for varying groove dimensions.

2.
J Chem Phys ; 157(12): 124107, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36182442

ABSTRACT

Locating transition states is crucial for investigating transition mechanisms in wide-ranging phenomena, from atomistic to macroscale systems. Existing methods, however, can struggle in problems with a large number of degrees of freedom, on-the-fly adaptive remeshing and coarse-graining, and energy landscapes that are locally flat or discontinuous. To resolve these challenges, we introduce a new double-ended method, the Binary-Image Transition State Search (BITSS). It uses just two states that converge to the transition state, resulting in a fast, flexible, and memory-efficient method. We also show that it is more robust compared to existing bracketing methods that use only two states. We demonstrate its versatility by applying BITSS to three very different classes of problems: Lennard-Jones clusters, shell buckling, and multiphase phase-field models.

3.
Soft Matter ; 17(40): 9019-9027, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34541597

ABSTRACT

The interplay between crystalline ordering, curvature, and size dispersity make the packing of bidisperse mixtures of particles on a sphere a varied and complex phenomenon. These structures have functional significance in a broad range of systems, such as cellular organisation in spherical epithelia, catalytic activity in binary colloidosomes, and chemical activity in heterofullerenes. In this contribution, we elucidate the potential energy landscapes for systems of repulsive, bidisperse particles confined to the surface of a sphere. It is commonly asserted that particle size dispersity destroys ordered arrangements, leading to glassy landscapes. Surprisingly, across a range of compositions, we find highly ordered global minima. Moreover, a minority of small particles is able to passivate defects, stabilising bidisperse global minima relative to monodisperse systems. However, our landscape analysis also reveals that bidispersity introduces numerous defective, low-lying states that are expected to cause broken ergodicity in corresponding experimental and computational systems. Probing the global minimum structures further, particle segregation is energetically preferred at intermediate compositions, contrasting with the approximate icosahedral global packing at either end of the composition range. Finally, changing the composition has a dramatic effect on the heat capacity: systems with low-symmetry global minima have melting temperatures an order of magnitude lower than monodisperse or high-symmetry systems. This observation may provide a further example of the principle of maximum symmetry: higher symmetry global minima exhibit a larger energy separation from the minima that define the high-entropy phase-like region of configuration space, raising the transition temperature.

4.
Langmuir ; 37(2): 908-917, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33395301

ABSTRACT

We numerically study two-component capillary bridges formed when a liquid droplet is placed in between two liquid-infused surfaces (LIS). In contrast to commonly studied one-component capillary bridges on noninfused solid surfaces, two-component liquid bridges can exhibit a range of different morphologies where the liquid droplet is directly in contact with two, one, or none of the LIS substrates. In addition, the capillary bridges may lose stability when compressed due to the envelopment of the droplet by the lubricant. We also characterize the capillary force, maximum separation, and effective spring force and find that they are influenced by the shape and size of the lubricant ridge. Importantly, these can be tuned to increase the effective capillary adhesion strength by manipulating the lubricant pressure, Neumann angle, and wetting contact angles. As such, LIS are not only "slippery" parallel to the surface, but they are also "sticky" perpendicular to the surface.

5.
Soft Matter ; 16(35): 8114-8121, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32734997

ABSTRACT

Liquid infused surfaces with partially wetting lubricants have recently been exploited for numerous intriguing applications, such as for droplet manipulation, droplet collection and spontaneous motion. When partially wetting lubricants are used, the pinning force is a key factor that can strongly affect droplet mobility. Here, we derive an analytical prediction for contact angle hysteresis in the limit where the meniscus size is much smaller than the droplet, and numerically study how it is controlled by the solid fraction, the lubricant wetting angles, and the various fluid surface tensions. We further relate the contact angle hysteresis and the pinning force experienced by a droplet on a liquid infused surface, and our predictions for the critical sliding angles are consistent with existing experimental observations. Finally, we discuss why a droplet on a liquid infused surface with partially wetting lubricants typically experiences stronger pinning compared to a droplet on a classical superhydrophobic surface.

6.
Langmuir ; 36(26): 7463-7473, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32486645

ABSTRACT

Joint physically and chemically pattered surfaces can provide efficient and passive manipulation of fluid flow. The ability of many of these surfaces to allow only unidirectional flow means they are often termed fluid diodes. Synthetic analogues of these are enabling technologies from sustainable water collection via fog harvesting to improved wound dressings. One key fluid diode geometry features a pore sandwiched between two absorbent substrates-an important design for applications that require liquid capture while preventing back-flow. However, the enclosed pore is particularly challenging to design as an effective fluid diode due to the need for both a low Laplace pressure for liquid entering the pore and a high Laplace pressure to liquid leaving. Here, we calculate the Laplace pressure for fluid traveling in both directions on a range of conical pore designs with a chemical gradient. We show that this chemical gradient is in general required to achieve the largest critical pressure differences between incoming and outgoing liquids. Finally, we discuss the optimization strategy to maximize this critical pressure asymmetry.

SELECTION OF CITATIONS
SEARCH DETAIL
...