Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 14(22): 5194-5202, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37256268

ABSTRACT

While halide perovskite thin films have enormous potential for photovoltaics and other optoelectronics, the use of environmentally hazardous solvents during their deposition and processing poses a barrier to their commercialization. In this work, we demonstrated the deposition of melt-processable precursors and subsequent transformation into halide perovskite thin films without using environmentally hazardous solvents. We melted the wide-bandgap layered perovskites [(C6H5CH(CH3)CH2NH3)2PbI4:ß-Me-PEA2PbI4] at ∼210 °C and blade coated them into films. The ß-Me-PEA2PbI4 films were subsequently transformed to perovskite-phase methylammonium or formamidinium lead iodide films using a cation-exchange process in an alcohol-based solvent. Lastly, we demonstrate the potential and limitations of a completely solvent-free approach that uses solid-state transformation of a ß-Me-PEA2PbI4 film. This work represents a substantial step toward eliminating environmentally hazardous solvents and enables inexpensive industrial-scale liquid-phase deposition processes that do not require expensive systems for handling and disposing of environmentally hazardous solvents.

2.
Nanomaterials (Basel) ; 12(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35407246

ABSTRACT

Germanane is a two-dimensional material consisting of stacks of atomically thin germanium sheets. It's easy and low-cost synthesis holds promise for the development of atomic-scale devices. However, to become an electronic-grade material, high-quality layered crystals with good chemical purity and stability are needed. To this end, we studied the electrical transport of annealed methyl-terminated germanane microcrystallites in both high vacuum and ultrahigh vacuum. Scanning electron microscopy of crystallites revealed two types of behavior which arise from the difference in the crystallite chemistry. While some crystallites are hydrated and oxidized, preventing the formation of good electrical contact, the four-point resistance of oxygen-free crystallites was measured with multiple tips scanning tunneling microscopy, yielding a bulk transport with resistivity smaller than 1 Ω·cm. When normalized by the crystallite thickness, the resistance compares well with the resistance of hydrogen-passivated germanane flakes found in the literature. Along with the high purity of the crystallites, a thermal stability of the resistance at 280 °C makes methyl-terminated germanane suitable for complementary metal oxide semiconductor back-end-of-line processes.

3.
J Biomed Mater Res B Appl Biomater ; 110(2): 450-459, 2022 02.
Article in English | MEDLINE | ID: mdl-34312984

ABSTRACT

Parkinson's disease (PD) is a devastating neurodegenerative disease affecting a large proportion of older adults. Exposure to pesticides like rotenone is a leading cause for PD. To reduce disease progression and prolong life expectancy, it is important to target disease mechanisms that contribute to dopaminergic neuronal atrophy, including mitochondrial dysfunction. Achieving targeted mitochondrial delivery is difficult for many therapeutics by themselves, necessitating higher therapeutic doses that could lead to toxicity. To minimize this adverse effect, targeted nano-carriers such as polyanhydride nanoparticles (NPs) can protect therapeutics from degradation and provide sustained release, enabling fewer administrations and lower therapeutic dose. This work expands upon the use of the polyanhydride NP platform for targeted drug delivery by functionalizing the polymer with a derivative of triphenylphosphonium called (3-carboxypropyl) triphenylphosphonium (CPTP) using a novel method that enables longer CPTP persistence on the NPs. The extent to which neurons internalized both nonfunctionalized and functionalized NPs was tested. Next, the efficacy of these nanoformulations in treating rotenone-induced mitochondrial dysfunction in the same cell line was evaluated using a novel neuroprotective drug, mito-metformin. CPTP functionalization significantly improved NP internalization by neuronal cells. This was correlated with significant protection by CPTP-functionalized, mito-metformin encapsulated NPs against rotenone-induced mitochondrial dysfunction. However, nonfunctionalized, mito-metformin encapsulated NPs and soluble mito-metformin administered at the same dose did not significantly protect cells from rotenone-induced toxicity. These results indicate that the targeted NP platform can provide enhanced dose-sparing and potentially reduce the occurrence of systemic side-effects for PD therapeutics.


Subject(s)
Nanoparticles , Neurodegenerative Diseases , Polyanhydrides , Aged , Humans , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Polyanhydrides/metabolism , Polyanhydrides/pharmacology , Rotenone/metabolism , Rotenone/toxicity
4.
ACS Nano ; 15(9): 14557-14569, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34506120

ABSTRACT

Atomically thin silicon nanosheets (SiNSs), such as silicane, have potential for next-generation computing paradigms, such as integrated photonics, owing to their efficient photoluminescence emission and complementary-metal-oxide-semiconductor (CMOS) compatibility. To be considered as a viable material for next-generation photonics, the SiNSs must retain their structural and optical properties at operating temperatures. However, the intersheet disorder of SiNSs and their nanoscale structure makes structural characterization difficult. Here, we use synchrotron X-ray diffraction and atomic pair distribution function (PDF) analysis to characterize the anisotropic disorder within SiNSs, demonstrating they exhibit disorder within the intersheet spacing, but have little translational or rotational disorder among adjacent SiNSs. Furthermore, we identify changes in their structural, chemical, and optical properties after being heated in an inert atmosphere up to 475 °C. We characterized changes of the annealed SiNSs using synchrotron-based total X-ray scattering, infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, electron paramagnetic resonance, absorbance, photoluminescence, and excited-state lifetime. We find that the silicon framework is robust, with an onset of amorphization at ∼300 °C, which is well above the required operating temperatures of photonic devices. Above ∼300 °C, we demonstrate that the SiNSs begin to coalesce while keeping their translational alignment to yield amorphous silicon nanosheets. In addition, our DFT results provide information on the structure, energetics, band structures, and vibrational properties of 11 distinct oxygen-containing SiNSs. Overall, these results provide critical information for the implementation of atomically thin silicon nanosheets in next-generation CMOS-compatible integrated photonic devices.

5.
Chem Commun (Camb) ; 55(43): 6102-6105, 2019 May 23.
Article in English | MEDLINE | ID: mdl-31070202

ABSTRACT

Germanium nanocrystals (Ge NCs) have potential to be used in several optoelectronic applications such as photodetectors and light-emitting diodes. Here, we report a solid-state route to synthesizing Ge NCs through thermal disproportionation of a germania (GeOX) glass, which was synthesized by hydrolyzing a GeCl2·dioxane complex. The GeOX glass synthesized in this manner was found to have residual Cl content. The process of nanocrystal nucleation and growth was monitored using powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Compared to existing solid-state routes for synthesizing colloidal Ge NCs, this approach requires fewer steps and is amenable to scaling to large-scale reactions.

6.
J Phys Chem Lett ; 10(11): 3134-3139, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31117682

ABSTRACT

Bismuth-based halide perovskites have been proposed as a potential nontoxic alternative to lead halide perovskites; however, they have not realized suitable performance. Their poor performance has been attributed to substandard film morphologies and too wide of a band gap for many applications. Herein we used a two-step deposition procedure to convert BiI3 thin films into A3Bi2I9 (A = FA+, MA+, Cs+, or Rb+), which resulted in a substantial improvement in film morphology, a larger band gap, and greater compositional tunability compared toresults when using aconventional single-step deposition technique. Additionally, we attempted to reduce the undesirably wide band gap in Rb3Bi2I9 thin films by inducing chemical pressures through cation-size mismatch, with an underlying hypothesis that cation-size mismatch could induce compressive strain within the 2D Rb3Bi2I9 lattice. However, we found that all A xRb3- xBi2I9 compositions with x > 0 adopted the 0D structure, and no changes to the band gap were observed with alloy. These results imply that the band gap of A xRb3- xBi2I9 is insensitive to A-site alloying.

7.
J Biomed Mater Res A ; 106(11): 2881-2890, 2018 11.
Article in English | MEDLINE | ID: mdl-30369055

ABSTRACT

An urgent need to deliver therapeutics across the blood-brain barrier (BBB) underlies a paucity of effective therapies currently available for treatment of degenerative, infectious, traumatic, chemical, and metabolic disorders of the nervous system. With an eye toward achieving this goal, an in vitro BBB model was employed to simulate biodegradable polyanhydride nanoparticle-based drug delivery to the brain. Using a combination of confocal microscopy, flow cytometry, and high performance liquid chromatography, we examined the potential of polyanhydride nanoparticles containing the anti-oxidant, mito-apocynin, to be internalized and then transferred from monocytes to human brain microvascular endothelial cells. The efficacy of this nanoparticle-based delivery platform was demonstrated by neuronal protection against oxidative stress. Taken together, this polyanhydride nanoparticle-based delivery system holds promise for enhancing neuroprotection by facilitating drug transport across the BBB. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2881-2890, 2018.


Subject(s)
Antioxidants/administration & dosage , Blood-Brain Barrier/metabolism , Drug Carriers/metabolism , Nanoparticles/metabolism , Polyanhydrides/metabolism , Adult , Antioxidants/pharmacokinetics , Biological Transport , Brain/metabolism , Cells, Cultured , Drug Carriers/chemistry , Drug Delivery Systems , Endothelial Cells/metabolism , Humans , Monocytes/metabolism , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Polyanhydrides/chemistry , Quantum Dots/chemistry , Quantum Dots/metabolism
8.
Adv Mater ; 28(40): 8892-8899, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27351073

ABSTRACT

Crack-free, ligand-free, phase-pure nanostructured solids, using colloidal nanocrystals as precursors, are fabricated by a scalable and facile approach. Films produced by this approach have conductivities comparable to those of bulk crystals over more than 1 cm (1.370 S cm-1 for PbS films).

9.
Science ; 347(6220): 425-8, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25569110

ABSTRACT

We propose a general strategy to synthesize largely unexplored soluble chalcogenidometallates of cadmium, lead, and bismuth. These compounds can be used as "solders" for semiconductors widely used in photovoltaics and thermoelectrics. The addition of solder helped to bond crystal surfaces and link nano- or mesoscale particles together. For example, CdSe nanocrystals with Na2Cd2Se3 solder was used as a soluble precursor for CdSe films with electron mobilities exceeding 300 square centimeters per volt-second. CdTe, PbTe, and Bi2Te3 powders were molded into various shapes in the presence of a small additive of composition-matched chalcogenidometallate or chalcogel, thus opening new design spaces for semiconductor technologies.

10.
ACS Nano ; 8(9): 9063-72, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25133302

ABSTRACT

We study the use of cadmium telluride (CdTe) nanocrystal colloids as a solution-processable "ink" for large-grain CdTe absorber layers in solar cells. The resulting grain structure and solar cell performance depend on the initial nanocrystal size, shape, and crystal structure. We find that inks of predominantly wurtzite tetrapod-shaped nanocrystals with arms ∼5.6 nm in diameter exhibit better device performance compared to inks composed of smaller tetrapods, irregular faceted nanocrystals, or spherical zincblende nanocrystals despite the fact that the final sintered film has a zincblende crystal structure. Five different working device architectures were investigated. The indium tin oxide (ITO)/CdTe/zinc oxide structure leads to our best performing device architecture (with efficiency >11%) compared to others including two structures with a cadmium sulfide (CdS) n-type layer typically used in high efficiency sublimation-grown CdTe solar cells. Moreover, devices without CdS have improved response at short wavelengths.

11.
Nano Lett ; 14(2): 670-5, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24364381

ABSTRACT

Solution processing of photovoltaic semiconducting layers offers the potential for drastic cost reduction through improved materials utilization and high device throughput. One compelling solution-based processing strategy utilizes semiconductor layers produced by sintering nanocrystals into large-grain semiconductors at relatively low temperatures. Using n-ZnO/p-CdTe as a model system, we fabricate sintered CdTe nanocrystal solar cells processed at 350 °C with power conversion efficiencies (PCE) as high as 12.3%. JSC of over 25 mA cm(-2) are achieved, which are comparable or higher than those achieved using traditional, close-space sublimated CdTe. We find that the VOC can be substantially increased by applying forward bias for short periods of time. Capacitance measurements as well as intensity- and temperature-dependent analysis indicate that the increased VOC is likely due to relaxation of an energetic barrier at the ITO/CdTe interface.

12.
Nano Lett ; 13(9): 4294-8, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23915166

ABSTRACT

Zinc sulfide-coated copper indium sulfur selenide (CuInSexS2-x/ZnS core/shell) nanocrystals were synthesized with size-tunable red to near-infrared (NIR) fluorescence with high quantum yield (40%) in water. These nanocrystals were tested as an imaging agent to track a microparticle-based oral vaccine administered to mice. Poly(lactic-co-glycolic acid) (PLGA) microparticle-encapsulated CuInSexSe2-x/ZnS quantum dots were orally administered to mice and were found to provide a distinct visible fluorescent marker in the gastrointestinal tract of living mice.


Subject(s)
Gastrointestinal Tract/diagnostic imaging , Optical Imaging , Quantum Dots/chemistry , Animals , Indium/chemistry , Lactic Acid/administration & dosage , Lactic Acid/chemistry , Mice , Polyglycolic Acid/administration & dosage , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Radiography , Selenium Compounds/chemistry , Sulfides/chemistry , Water/chemistry , Whole Body Imaging , Zinc Compounds/chemistry
13.
ChemSusChem ; 6(3): 481-6, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23401465

ABSTRACT

Thin-film photovoltaic devices (PVs) were prepared by selenization using oleylamine-capped Cu(In,Ga)Se2 (CIGS) nanocrystals sintered at a high temperature (>500 °C) under Se vapor. The device performance varied significantly with [Ga]/[In+Ga] content in the nanocrystals. The highest power conversion efficiency (PCE) observed in the devices studied was 5.1 % under air mass 1.5 global (AM 1.5 G) illumination, obtained with [Ga]/[In+Ga]=0.32. The variation in PCE with composition is partly a result of bandgap tuning and optimization, but the main influence of nanocrystal composition appeared to be on the quality of the sintered films. The [Cu]/[In+Ga] content was found to be strongly influenced by the [Ga]/[In+Ga] concentration, which appears to be correlated with the morphology of the sintered film. For this reason, only small changes in the [Ga]/[In+Ga] content resulted in significant variations in device efficiency.


Subject(s)
Copper/chemistry , Electric Power Supplies , Gallium/chemistry , Indium/chemistry , Nanoparticles/chemistry , Selenium/chemistry , Solar Energy , Electric Conductivity
14.
Langmuir ; 29(5): 1533-40, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23312033

ABSTRACT

H-terminated Si nanocrystals undergo room temperature hydrosilylation with bifunctional alkenes with distal polar moieties-ethyl ester, methyl ester, or carboxylic acids-without the aid of light or added catalyst. The passivated Si nanocrystals exhibit bright photoluminescence (PL) and disperse in polar solvents, including water. We propose a reaction mechanism in which ester or carboxylic acid groups facilitate direct nucleophilic attack of the highly curved Si surface of the nanocrystals by the alkene.


Subject(s)
Alkenes/chemistry , Nanoparticles/chemistry , Silicon/chemistry , Temperature , Carboxylic Acids/chemistry , Esters/chemistry , Molecular Structure , Particle Size , Surface Properties
15.
J Phys Chem Lett ; 4(12): 2030-4, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-26283248

ABSTRACT

CuInSe2 (CISe) quantum dots (QDs) were synthesized with tunable size from less than 2 to 7 nm diameter. Nanocrystals were made using a secondary phosphine selenide as the Se source, which, compared to tertiary phosphine selenide precursors, was found to provide higher product yields and smaller nanocrystals that elicit quantum confinement with a size-dependent optical gap. Photovoltaic devices fabricated from spray-cast CISe QD films exhibited large, size-dependent, open-circuit voltages, up to 849 mV for absorber films with a 1.46 eV optical gap, suggesting that midgap trapping does not dominate the performance of these CISe QD solar cells.

16.
Annu Rev Chem Biomol Eng ; 3: 287-311, 2012.
Article in English | MEDLINE | ID: mdl-22468605

ABSTRACT

Semiconductor nanocrystals are promising materials for low-cost large-area electronic device fabrication. They can be synthesized with a wide variety of chemical compositions and size-tunable optical and electronic properties as well as dispersed in solvents for room-temperature deposition using various types of printing processes. This review addresses research progress in large-area electronic device applications using nanocrystal-based electrically active thin films, including thin-film transistors, light-emitting diodes, photovoltaics, and thermoelectrics.


Subject(s)
Electronics/methods , Nanoparticles/chemistry , Electronics/instrumentation , Micro-Electrical-Mechanical Systems , Printing , Quantum Dots , Solvents/chemistry , Transistors, Electronic
17.
ACS Appl Mater Interfaces ; 4(5): 2757-61, 2012 May.
Article in English | MEDLINE | ID: mdl-22524385

ABSTRACT

Thin film photovoltaic devices (PVs) were fabricated with CuInSe(2) (CIS) nanocrystals capped with either oleylamine, inorganic metal chalcogenide-hydrazinium complexes (MCC), or S(2-), HS(-), and OH(-). A CIS nanocrystal layer deposited from solvent-based inks without high temperature processing served as the active light-absorbing material in the devices. The MCC ligand-capped CIS nanocrystal PVs exhibited power conversion efficiency under AM1.5 illumination (1.7%) comparable to the oleylamine-capped CIS nanocrystals (1.6%), but with significantly thinner absorber layers. S(2-)-capped CIS nanocrystals could be deposited from aqueous dispersions, but exhibited lower photovoltaic performance.

18.
Nano Lett ; 11(6): 2560-6, 2011 Jun 08.
Article in English | MEDLINE | ID: mdl-21553924

ABSTRACT

Ligand-stabilized copper selenide (Cu(2-x)Se) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near-infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 10(7) cm(-1) M(-1) at 980 nm. When excited with 800 nm light, the Cu(2-x)Se nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu(2-x)Se nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 min of laser irradiation at 33 W/cm(2), demonstrating the viabilitiy of Cu(2-x)Se nanocrystals for photothermal therapy applications.


Subject(s)
Antineoplastic Agents/pharmacology , Copper/pharmacology , Nanostructures/chemistry , Selenium/pharmacology , Antineoplastic Agents/chemistry , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Copper/chemistry , Drug Screening Assays, Antitumor , Gold/chemistry , Humans , Lasers , Particle Size , Phototherapy , Selenium/chemistry , Structure-Activity Relationship , Surface Properties
19.
J Phys Chem C Nanomater Interfaces ; 115(14): 6397-6404, 2011 Apr 14.
Article in English | MEDLINE | ID: mdl-21566701

ABSTRACT

The structural evolution of a body-centered cubic (bcc) superlattice of 6.6 nm diameter organic ligand-coated PbSe nanocrystals was studied in situ by small angle X-ray scattering (SAXS) as it was heated in air from room temperature to 350°C. As it was heated above room temperature, the superlattice contracted slightly, but maintained bcc structure up to 110°C. Once the temperature rose above 110°C, the superlattice began to disorder, by first losing long-range translational order and then local positional order. At temperatures exceeding 168°C, the nanocrystals sintered and oxidized, transforming into PbSeO(3) nanorods.

20.
ACS Appl Mater Interfaces ; 3(5): 1781-5, 2011 May.
Article in English | MEDLINE | ID: mdl-21452830

ABSTRACT

CuInSe2 (CIS) nanowires were synthesized by solution-liquid-solid (SLS) growth in a high boiling solvent using bismuth nanocrystals as seeds. The nanowires tended to be slightly deficient in In and exhibited either cubic or hexagonal crystal structure, depending on the synthesis conditions. The hexagonal structure, which is not observed in bulk crystals, appears to evolve from large concentrations of twin defects. The nanowires could be compressed into a free-standing fabric or paper-like material. Photovoltaic devices (PVs) were fabricated using the nanowires as the light-absorbing layer to test their viability as a solar cell material and were found to exhibit measurable PV response.

SELECTION OF CITATIONS
SEARCH DETAIL
...