Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(14)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34300861

ABSTRACT

Due to its valuable compounds, food waste has been gaining attention in different applications, such as life quality and environment. Combined with circular economy requirements, a valorization method for waste, especially banana waste, was to convert them into adsorbents with advanced properties. The banana waste, after thermal treatment, was used with high removal performances (100%) for the removal of heavy metals, such as Cr, Cu, Pb, and Zn, but their small particle size makes them very hard to recover and reuse. For this reason, a biopolymeric matrix was used to incorporate the banana waste. The matrix was chosen for its remarkable properties, such as low cost, biodegradability, low carbon footprint, and reduced environmental impact. In this research, different types of materials (simple banana peel ash BPA and combined with biopolymeric matrix, ALG-BPA, CS-BPA) were prepared, characterized, and tested. The materials were characterized by means of attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), optical microscopy (OM), scanning electron microscopy (SEM), and tested for the removal of metal ions from synthetic solutions using atomic absorption spectroscopy (AAS). The ALG-BPA material proved to be the most efficient in the removal of heavy metal ions from synthetic solution, reaching even 100% metal removal for Cr, Fe, Pb, and Zn, while the CS-based materials were the least efficient, presenting the best values for Cr and Fe ions with a removal efficiency of 34.14% and 28.38%, respectively. By adding BPA to CS, the adsorption properties of the material were slightly improved, but also only for Cr and Fe ions, to 37.09% and 57.78%.

2.
Toxics ; 8(4)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182698

ABSTRACT

Removing heavy metals from wastewaters is a challenging process that requires constant attention and monitoring, as heavy metals are major wastewater pollutants that are not biodegradable and thus accumulate in the ecosystem. In addition, the persistent nature, toxicity and accumulation of heavy metal ions in the human body have become the driving force for searching new and more efficient water treatment technologies to reduce the concentration of heavy metal in waters. Because the conventional techniques will not be able to keep up with the growing demand for lower heavy metals levels in drinking water and wastewaters, it is becoming increasingly challenging to implement technologically advanced alternative water treatments. Nanotechnology offers a number of advantages compared to other methods. Nanomaterials are more efficient in terms of cost and volume, and many process mechanisms are better and faster at nanoscale. Although nanomaterials have already proved themselves in water technology, there are specific challenges related to their stability, toxicity and recovery, which led to innovations to counteract them. Taking into account the multidisciplinary research of water treatment for the removal of heavy metals, the present review provides an updated report on the main technologies and materials used for the removal of heavy metals with an emphasis on nanoscale materials and processes involved in the heavy metals removal and detection.

3.
Sci Rep ; 10(1): 19827, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33188236

ABSTRACT

The influence of waste glass and red mud addition as alternative source of aluminosilicate precursors on the microstructural, mechanical, and leaching properties of bottom ash-based geopolymer was studied in this work through mineralogical, morphological, and spectroscopic analysis, as well as by conducting compressive strength and leaching tests. The bottom ash-based geopolymer composites were synthesized by adding a constant amount of waste glass (10% by weight) and increasing amounts of red mud (up to 30% by weight). The results derived from FTIR, 29Si and 27Al MAS NMR, and SEM-EDX revealed that adding up to 10% (by weight) red mud to the synthesis mixes leads to an increase in the degree of geopolymerization of the activated mixes. The compressive strength followed the same trend. An increase of more than 10% (by weight) red mud added to the synthesis mixes results in a significant decrease of compressive strength of the geopolymer composites. A low leachability of geopolymer composites in regard with their contaminants was revealed especially for those with good compressive strength.

4.
Nanomaterials (Basel) ; 9(10)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614663

ABSTRACT

A comparison was performed between Co-Ni thin films and template-assisted nanowires arrays obtained by electrochemical co-deposition. To reduce the effects of anomalous deposition and increase the Ni content in the deposit, an electrolyte with three times more Ni than Co in atomic ratio was chosen. Electrochemical deposition was performed at constant potentials chosen in the range from E = -0.8 to -1.2 V vs. Ag/AgCl. Cyclic voltammetry, chronoamperometry, and charge stripping techniques were used to characterize and compare the electrochemical behavior of Co-Ni films and nanowires. Morphological and compositional characterization was performed by scanning electron microscopy (SEM/EDAX) to assess the influence of the deposition potential on the growth of film and nanowires. A comprehensive analysis of the deposit growth rates for thin films and nanowires is presented taking into consideration the hydrogen evolution and anomalous deposition. The comparative study of the composition of film and nanowires obtained at different deposition potentials has shown that deposition of nanowires with a film-like composition takes place at more positive potential than thin film.

5.
R Soc Open Sci ; 5(3): 171525, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29657763

ABSTRACT

Synthesis and characterization of iron oxide nanoparticles coated with a large molar weight dextran for environmental applications are reported. The first experiments involved the synthesis of iron oxide nanoparticles which were coated with dextran at different concentrations. The synthesis was performed by a co-precipitation technique, while the coating of iron oxide nanoparticles was carried out in solution. The obtained nanoparticles were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectrometry, Fourier transform infrared spectroscopy and superconducting quantum interference device magnetometry. The results demonstrated a successful coating of iron oxide nanoparticles with large molar weight dextran, of which agglomeration tendency depended on the amount of dextran in the coating solution. SEM and TEM observations have shown that the iron oxide nanoparticles are of about 7 nm in size.

SELECTION OF CITATIONS
SEARCH DETAIL
...