Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 617(7960): 386-394, 2023 May.
Article in English | MEDLINE | ID: mdl-37100912

ABSTRACT

Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.


Subject(s)
Cell Plasticity , Copper , Inflammation , Signal Transduction , Animals , Mice , Copper/metabolism , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , NAD/metabolism , Signal Transduction/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Hydrogen Peroxide/metabolism , Epigenesis, Genetic/drug effects , Metformin/analogs & derivatives , Oxidation-Reduction , Cell Plasticity/drug effects , Cell Plasticity/genetics , Macrophage Activation/drug effects , Macrophage Activation/genetics
2.
Molecules ; 25(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371353

ABSTRACT

The first example of uniformly chiral thin films of silicon phthalocyanines (SiPcs) are reported. The local domains of the films are mapped using circular dichroism (CD) imaging (CDi) technique available at the Diamond B23 beamline. The CDi allowed us to increase the spatial resolution up to 525× when compared with benchtop spectrometers. The results indicate formation on-surface of chiral and stable supramolecular assemblies with homogenous distribution. Chemical functionalization and solvent choice for deposition allow controllable chiroptical properties to be obtained. The method and technique reported in this work could be applied to prepare and characterize a wide variety of chiral thin films.


Subject(s)
Indoles/chemistry , Organosilicon Compounds/chemistry , Silicon/chemistry , Circular Dichroism/methods , Solvents/chemistry
3.
Nat Commun ; 11(1): 3528, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32669543

ABSTRACT

Structurally Divergent Reactions on Racemic Mixtures are atypical processes in Nature. The few examples reported in the literature take place in organic solvents and are driven by the reagents' interaction with bulky chiral catalysts. Herein, we describe a dynamic combinatorial approach to generate structural divergence from racemic building blocks. The divergence is due to a stereospecific electron-donor - electron-acceptor interaction of diastereomeric macrocycles, leading to structurally distinct pseudorotaxanes. The equilibrated dynamic combinatorial library contains, amongst various macrocycles, two different types of [2]catenanes that are non-isomeric. The formation of these [2]catenanes is due to a spontaneous stereo and structurally divergent assembly of the building blocks.

4.
Molecules ; 24(8)2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30991655

ABSTRACT

Four pairs of amino acid-functionalized naphthalenediimide enantiomers (d- and l-lysine derived NDIs) were screened toward G-quadruplex forming sequences in telomeres (h-TELO) and oncogene promoters: c-KIT1, c-KIT2, k-RAS and BCL-2. This is the first study to address the effect of point chirality toward G-quadruplex DNA stabilization using purely small organic molecules. Enantioselective behavior toward the majority of ligands was observed, particularly in the case of parallel conformations of c-KIT2 and k-RAS. Additionally, Nε-Boc-l-Lys-NDI and Nε-Boc-d-Lys-NDI discriminate between quadruplexes with parallel and hybrid topologies, which has not previously been observed with enantiomeric ligands.


Subject(s)
DNA/chemistry , G-Quadruplexes , Imides/chemistry , Naphthalenes/chemistry , Telomere/chemistry , Humans , Oncogenes
5.
Sci Rep ; 8(1): 4295, 2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29511295

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

6.
Sci Rep ; 7(1): 18114, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29273776

ABSTRACT

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

7.
Sci Rep ; 7(1): 13009, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29097766

ABSTRACT

Wastewater-based epidemiology is an innovative approach to estimate public health status using biomarker analysis in wastewater. A new compound detected in wastewater can be a potential biomarker of an emerging trend in public health. However, it is currently difficult to select new biomarkers mainly due to limited human metabolism data. This manuscript presents a new framework, which enables the identification and selection of new biomarkers of human exposure to drugs with scarce or unknown human metabolism data. Mephedrone was targeted to elucidate the assessment of biomarkers for emerging drugs of abuse using a four-step analytical procedure. This framework consists of: (i) identification of possible metabolic biomarkers present in wastewater using an in-vivo study; (ii) verification of chiral signature of the target compound; (iii) confirmation of human metabolic residues in in-vivo/vitro studies and (iv) verification of stability of biomarkers in wastewater. Mephedrone was selected as a suitable biomarker due to its high stability profile in wastewater. Its enantiomeric profiling was studied for the first time in biological and environmental matrices, showing stereoselective metabolism of mephedrone in humans. Further biomarker candidates were also proposed for future investigation: 4'-carboxy-mephedrone, 4'-carboxy-normephedrone, 1-dihydro-mephedrone, 1-dihydro-normephedrone and 4'-hydroxy-normephedrone.


Subject(s)
Biomarkers/analysis , Environmental Exposure , Methamphetamine/analogs & derivatives , Animals , Biomarkers/urine , Humans , Metabolome , Methamphetamine/adverse effects , Methamphetamine/chemistry , Methamphetamine/urine , Microsomes, Liver/metabolism , Rats , Reproducibility of Results , Stereoisomerism , Waste Disposal, Fluid , Wastewater/chemistry , Wastewater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...