Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(1)2022 12 24.
Article in English | MEDLINE | ID: mdl-36672804

ABSTRACT

Gastric cancer (GC) is a multifactorial, complex, and aggressive disease with a prevalence of one million new cases and high global mortality. Factors such as genetic, epigenetic, and environmental changes contribute to the onset and progression of the disease. Identification of INDELs in miRNA and its target sites in current studies showed an important role in the development of cancer. In GC, miRNAs act as oncogenes or tumor suppressors, favoring important cancer pathways, such as cell proliferation and migration. This work aims to investigate INDELs in the coding region of miRNAs (hsa-miR-302c, hsa-miR-548AJ-2, hsa-miR-4274, hsa-miR-630, hsa-miR-516B-2, hsa-miR-4463, hsa-miR-3945, hsa-miR-548H_4, hsa-miR-920, has-mir-3171, and hsa-miR-3652) that may be associated with susceptibility and clinical variants of gastric cancer. For this study, 301 patients with GC and 145 individuals from the control group were selected from an admixed population in the Brazilian Amazon. The results showed the hsa-miR-4463, hsa-miR-3945, hsa-miR-548H_4, hsa-miR-920 and hsa-miR-3652 variants were associated with gastric cancer susceptibility. The hsa-miR-4463 was significantly associated with clinical features of GC such as diffuse gastric tumor histological type, "non-cardia" localization region, and early onset. Our findings indicated that INDELs could be potentially functional genetic variants for gastric cancer risk.


Subject(s)
MicroRNAs , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Oncogenes , Biomarkers, Tumor/genetics
2.
Mol Genet Genomic Med ; 9(7): e1694, 2021 07.
Article in English | MEDLINE | ID: mdl-34050721

ABSTRACT

BACKGROUND: Susceptibility to Chronic Myeloid Leukemia (CML) may be modulated by genetic variables. However, the majority of previous investigations have focused on genetically homogeneous populations, resulting in a lack of evidence on how genetic factors may influence the development of CML in miscegenated populations. We analyzed 30 polymorphisms in genes related to DNA repair, folate metabolism, transmembrane transport, xenobiotic metabolism, and pyrimidine synthesis in relation to their potential role in the susceptibility of the individual to CML. METHODS: This case-control study included 126 healthy individuals and 143 patients diagnosed with CML from the admixed population of the Brazilian Amazon. The samples were genotyped by real-time PCR and the genetic ancestry analysis was based on a panel of 61 ancestry informative markers. RESULTS: The results indicated a protective effect against the development of CML in carriers of the C allele of the rs28399433 (CYP2A6) gene and the CC genotype of the rs3742106 (ABCC4) gene. CONCLUSION: Our findings suggest that the rs3742106 (ABCC4) and rs28399433 (CYP2A6) polymorphisms may modulate susceptibility to CML in a population of the Brazilian Amazon region.


Subject(s)
Cytochrome P-450 CYP2A6/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Multidrug Resistance-Associated Proteins/genetics , Polymorphism, Single Nucleotide , Adult , Brazil , Female , Humans , Male , Middle Aged
3.
Leuk Res ; 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26321572

ABSTRACT

Acute lymphoblastic leukemia (ALL) is a malignant tumor common in children. Studies of genetic susceptibility to cancer using biallelic insertion/deletion (INDEL) type polymorphisms associated with cancer development pathways may help to clarify etymology of ALL. In this study, we investigate the role of eight functional INDEL polymorphisms and influence of genetic ancestry to B-cell ALL susceptibility in children of Brazilian Amazon population, which has a high degree of inter-ethnic admixture. Ancestry analysis was estimated using a panel of 48 autosomal ancestry informative markers. 130 B-cell ALL patients and 125 healthy controls were included in this study. The odds ratios and 95% confidence intervals were adjusted for confounders. The results indicated an association between the investigated INDEL polymorphisms in CASP8 (rs3834129), CYP19A1 (rs11575899) e XRCC1 (rs3213239) genes in the development of B-cell ALL. The carriers of Insertion/Insertion (Ins/Ins) genotype of the polymorphism in CASP8 gene presented reduced chances of developing B-cell ALL (P=0.001; OR=0.353; 95% CI=0.192-0.651). The Deletion/Deletion (Del/Del) genotype of the polymorphism in CYP19A1 gene was associated to a lower chance of developing B-cell ALL (P=3.35×10-6; OR=0.121; 95% CI=0.050-0.295), while Del/Del genotype of the polymorphism in XRCC1 gene was associated to a higher chance of developing B-cell ALL (P=2.01×10-4; OR=6.559; 95% CI=2.433-17.681). We also found that Amerindian ancestry correlates with the risk of B-cell ALL. For each increase of 10% in the Amerindian ancestry results in 1.4-fold chances of developing B-cell ALL (OR=1.406; 95% IC=1.123-1.761), while each increase of 10% in the European ancestry presents a protection effect in the development of B-cell ALL (OR=0.666; 95% IC=0.536-0.827). The results suggest that genetic factors influence leukemogenesis and might be explored in the stratification of B-cell ALL risk in admixed populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...