Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 135(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38760884

ABSTRACT

AIMS: Enterococcus faecalis (E. faecalis) is a leading cause of nosocomial infection and presents a wide spectrum of antibiotic resistance, being vancomycin-resistant Enterococcus (VRE) one of the most relevant. Synthetic antimicrobial peptides (SAMPs) are currently a promising option to overcome antimicrobial resistance. Thus, the purpose of this study was to assess the effect of eight SAMPs against vancomycin-resistant E. faecalis, as well as to investigate their mechanism of action and synergy with conventional antibiotics. METHODS AND RESULTS: Here, eight SAMPs, Mo-CBP3-PepI, Mo-CBP3-PepII, Mo-CBP3-PepIII, RcAlb-PepI, RcAlb-PepII, RcAlb-PepIII, PepGAT, and PepKAA, were tested for antibacterial activity in vitro against E. faecalis (ATCC® 51299) through broth microdilution. A maximum of 48% of E. faecalis growth inhibition was achieved by treatment with SAMPs alone. However, when these peptides were combined with the antibiotic chloramphenicol, assessed by checkerboard method, the inhibition increased to 55%-76% of inhibition, two to three-folds of increase if compared to the effects of the compounds alone. Microscopic analysis showed that E. faecalis cells treated with a combination of SAMPs and chloramphenicol resulted in bacterial membrane damage. The biofilm inhibition maximum was 22% for SAMPs alone, when combined with chloramphenicol, the maximum increased to 33%. CONCLUSIONS: SAMPs and their combination with chloramphenicol demonstrate antibacterial activity against E. faecalis, possibly by inducing bacterial membrane damage.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Chloramphenicol , Drug Synergism , Enterococcus faecalis , Microbial Sensitivity Tests , Vancomycin-Resistant Enterococci , Enterococcus faecalis/drug effects , Enterococcus faecalis/growth & development , Anti-Bacterial Agents/pharmacology , Chloramphenicol/pharmacology , Antimicrobial Peptides/pharmacology , Vancomycin-Resistant Enterococci/drug effects , Vancomycin/pharmacology
2.
Chem Biodivers ; 21(2): e202301840, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38088493

ABSTRACT

Resistance to antimicrobial drugs has been considered a public health problem. Likewise, the increasing resistance of cancer cells to drugs currently used in therapy has also become a problem. Therefore, the research and development of synthetic peptides bring a new perspective on the emergence of new drugs for treating this resistance since bioinformatics provides a means to optimize these molecules and save time and costs in research. Peptides have several mechanisms of action, such as forming pores on the cell membrane and inhibiting protein synthesis. Some studies report the use of antimicrobial peptides with the potential for action against cancer cells, suggesting a repositioning of antimicrobial peptides to fight back cancer resistance. There is an alteration in the microenvironment, making its net charge negative for the survival and growth of cancer cells. The changes in glycoproteins favor the membrane to have a more negative charge, favoring the interaction between the cells and the peptide, thus making possible the repositioning of these antimicrobial peptides against cancer. Here, we will discuss the mechanism of action, targets and effects of peptides, comparison between microbial and cancer cells, and proteomic changes caused by the interaction of peptides and cells.


Subject(s)
Anti-Infective Agents , Neoplasms , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Peptides , Drug Repositioning , Proteomics , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...