Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Thyroid ; 32(6): 714-724, 2022 06.
Article in English | MEDLINE | ID: mdl-35297659

ABSTRACT

Background: Thyroid hormone has a differential action on healthy and ischemic heart. Triiodothyronine (T3) administration improved postischemic cardiac function while it limited apoptosis in experimentally induced ischemia. Thus, the present study investigated the potential effects of acute liothyronine (LT3) treatment in patients with anterior myocardial infarction. Methods: This study is a pilot, randomized, double-blind, placebo-controlled trial (ThyRepair study). We randomized 52 patients and analyzed data from 37 patients (n = 16 placebo and n = 21 LT3), per prespecified per protocol analysis. We excluded three patients who had died of cardiovascular causes (one in placebo and two in LT3 arm), four with small infarct size below a pre-specified threshold (in the placebo arm), and the rest, who lacked follow-up data. LT3 treatment started after stenting as an intravenous (i.v.) bolus injection of 0.8 µg/kg of LT3 followed by a constant infusion of 0.113 µg/kg/h i.v. for 48 hours. All patients had cardiac magnetic resonance (CMR) at hospital discharge and 6 months follow-up. The primary end point was CMR left ventricular (LV) ejection fraction (LVEF) and secondary endpoints were LV volumes, infarct volume (IV), and safety. Results: The CMR LVEF% at 6 months was 53.6 ± 9.5 for the LT3-treated group and 48.6 ± 11 for placebo, p = 0.15. Acute LT3 treatment resulted in a significantly lower LV end-diastolic volume index (92.2 ± 16.8 mL/m2 vs. 107.5 ± 22.2, p = 0.022) and LV systolic volume index (47.5 ± 13.9 mL/m2 vs. 61.3 ± 21.7, p = 0.024) at hospital discharge, but not at 6 months. There was no statistically significant difference in CMR IV at hospital discharge between the groups (p = 0.24). CMR IV tended to be lower in the LT3-treated group at 6 months (18.7 ± 9.5 vs. 25.9 ± 11.7, in placebo, p = 0.05). Serious, life-threatening events related to LT3 treatment were not observed. A tendency for an increased incidence of atrial fibrillation (AF) was found in the LT3 group during the first 48 hours (19% for T3 group vs. 5% for placebo, p = 0.13). Conclusion: This pilot randomized, placebo-controlled trial study suggests potential favorable effects (acute cardiac dilatation and 6-month IV) as well as potential concerns regarding a higher risk of AF after LT3 administration early after myocardial infarction, which should be tested in a larger scale study.


Subject(s)
Myocardial Infarction , Triiodothyronine , Angioplasty , Double-Blind Method , Humans , Myocardial Infarction/drug therapy , Pilot Projects , Treatment Outcome , Triiodothyronine/therapeutic use
2.
J Clin Med ; 10(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34945151

ABSTRACT

Tissue hypoxia occurs in various conditions such as myocardial or brain ischemia and infarction, sepsis, and trauma, and induces cellular damage and tissue remodeling with recapitulation of fetal-like reprogramming, which eventually results in organ failure. Analogies seem to exist between the damaged hypoxic and developing organs, indicating that a regulatory network which drives embryonic organ development may control aspects of heart (or tissue) repair. In this context, thyroid hormone (TH), which is a critical regulator of organ maturation, physiologic angiogenesis, and mitochondrial biogenesis during fetal development, may be of important physiological relevance upon stress (hypoxia)-induced fetal reprogramming. TH signaling has been implicated in hypoxic tissue remodeling after myocardial infarction and T3 prevents remodeling of the postinfarcted heart. Similarly, preliminary experimental evidence suggests that T3 can prevent early tissue hypoxia during sepsis with important physiological consequences. Thus, based on common pathways between different paradigms, we propose a possible role of TH in tissue hypoxia after sepsis with the potential to reduce secondary organ failure.

4.
Thyroid ; 12(4): 325-9, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12034058

ABSTRACT

We have previously shown that long-term thyroxine administration can protect the heart against ischemia. In the present study, we investigated whether thyroxine-induced cardioprotection can mimic the pattern of protection that is afforded by a well-established cardioprotective means such as ischemic preconditioning. In a Langendorff-perfused rat heart preparation, after an initial stabilization, normal and thyroxine-treated hearts were subjected to 20 minutes of zero-flow global ischemia followed by 45 minutes of reperfusion. In thyroxine-treated hearts, phospho-p38 mitogen-activated protein kinase (MAPK) was found to be less at the end of the ischemic period, whereas ischemic contracture was accelerated and postischemic recovery was increased in comparison to normal hearts. In addition, normal hearts were subjected to a four-cycle preconditioning protocol before ischemia. Phospho-p38 MAPK was found to be less at the end of the ischemic period in preconditioned hearts, whereas ischemic contracture was accelerated and postischemic functional recovery was increased in those hearts in comparison to nonpreconditioned hearts. An increase in basal expression and phosphorylation of PKCdelta was also found to occur after long-term thyroxine administration. We conclude that long-term thyroxine administration can protect the heart from ischemic injury through a pattern of protection that closely resembles that of ischemic preconditioning.


Subject(s)
Cardiotonic Agents/administration & dosage , Ischemic Preconditioning, Myocardial , Thyroxine/administration & dosage , Animals , Cardiotonic Agents/pharmacology , Drug Administration Schedule , Enzyme Activation , Heart/drug effects , Heart/physiology , Male , Mitogen-Activated Protein Kinases/metabolism , Myocardial Contraction , Myocardium/enzymology , Phosphorylation , Protein Kinase C/metabolism , Rats , Rats, Wistar , Thyroxine/pharmacology , p38 Mitogen-Activated Protein Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...