Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38703313

ABSTRACT

Population growth and environmental degradation are major concerns for sustainable development worldwide. Hydrogen is a clean and eco-friendly alternative to fossil fuels, with a heating value almost three times higher than other fossil fuels. It also has a clean production process, which helps to reduce the emission of hazardous pollutants and save the environment. Among the various production methodologies described in this review, biochemical production of hydrogen is considered more suitable as it uses waste organic matter instead of fossil fuels. This technology not only produces clean energy but also helps to manage waste more efficiently. However, the production of hydrogen obtained from this method is currently more expensive due to its early stage of development. Nevertheless, various research projects are underway to develop this method on a commercial scale.

3.
Environ Sci Pollut Res Int ; 29(29): 44067-44090, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35122649

ABSTRACT

Mining and extraction of stones and minerals play a significant role in many countries economic growth in the world. The production of dolomite minerals in various industries in India and other countries produces vast amounts of waste in different fractions. Disposal of these types of industrial wastes in an immense quantity causes environmental pollution. The performance of dolomite mining residues on concrete properties as a fine aggregate substitute was examined. The microstructural analysis was conducted on the concrete samples to find the effect of dolomite mining residues in concrete. The stress-strain behaviour of the dolomite mining residues concrete was studied. The effect of exposure to elevated temperature and freeze-thaw on concrete properties containing dolomite mining residues was found up to 100% at 10% incremental order. The thermogravimetric analysis (TGA) and differential thermogravimetry (DTG) tests were conducted on the dolomite mining residues and concrete samples. As a test result, concrete properties influence with the incorporation of the dolomite mining residues as a substitution of river sand, but no significant effect is observed in the concrete properties containing 10% dolomite mining residues. Up to 10% of dolomite production waste can be used as a sand substitute in concrete and other applications for sustainable development.


Subject(s)
Construction Materials , Sand , Calcium Carbonate , Construction Materials/analysis , Industrial Waste/analysis , Magnesium , Minerals , Temperature
4.
Waste Manag Res ; 40(5): 504-518, 2022 May.
Article in English | MEDLINE | ID: mdl-33885343

ABSTRACT

Solar energy has become a leading solution to meet the increasing energy demand of growing populations. Solar photovoltaic technology is an efficient option to generate electricity from solar energy and mitigate climate change. Although the development and growth of solar photovoltaics has had a positive impact on energy system decarbonization, but end-of-life solar panels might become toxic waste if not properly disposed of. Presently in India, approximately 200,000 tonnes of solar photovoltaic waste are expected to be produced by 2030 and 1.8 million tonnes by 2050, by which time solar waste could grow to 60 million tonnes globally. Solar waste has recently been included in the category of waste electrical and electronic equipment to restrict the negative influence of continual development. Recent advancements have been focused only on increasing the efficiency of solar photovoltaic panels without considering the impact of waste solar panels on the environment and the issue of appropriate disposal of waste panels. Effective and ecofriendly methods for recycling end-of-life waste are rarely considered. There is a need to critically investigate and manage the disposal and recycling of solar panels waste. This review article addresses handling and recycling of solar waste, which will be present in large quantities after 25 years. We review multiple adopted technologies to recycle solar waste and technological advancement achieved while recycling photovoltaic waste. Further life cycle assessment of recycling technologies is also discussed.


Subject(s)
Electronic Waste , Solar Energy , Waste Management , Electricity , Electronics , Recycling
SELECTION OF CITATIONS
SEARCH DETAIL
...