Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(14): 21012-21027, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383928

ABSTRACT

The environment in India is contaminated with polycyclic aromatic hydrocarbons (PAHs) due to the occurrence of large anthropogenic activities, i.e., fuel combustion, mineral roasting, and biomass burning. Hence, 13 toxic PAHs were detected: phenanthrene, anthracene, fluoranthene, pyrene, and benz(a) anthracene, ben-zo; (b) fluoranthene, benzo(k) fluoranthene, benzo(a) pyrene, benzo(ghi)perylene, dibenz (ah) anthracene, indeno1,2,3-(cd) pyrene, coronene and coronene in the environment (i.e., ambient particulate matter, road dust, sludge, and sewage) of the most industrialized area. Pollutants such as heavy metals and polycyclic aromatic hydrocarbons co-contaminate the soil and pose a significant hazard to the ecosystem because these pollutants are harmful to both humans and the environment. Phytoremediation is an economical plant-based natural approach for soil clean-up that has no negative impact on ecosystems. The aim of this study was to investigate the effects of pyrene (500 mg kg-1), Zn (150 mg kg-1), Pb (150 mg kg-1), and Cd (150 mg kg-1) alone and in combination on the phytoextraction efficiency of Medicago sativa growing in contaminated soil. Plant biomass, biochemical activities, translocation factors, accumulation of heavy metals, and pyrene removal were determined. After 60 days of planting, compared with those of the control plants, the growth parameters, biomass, and chlorophyll content of the M. sativa plants were significantly lower, and the reactive oxygen species activity, such as proline and polyphenol content and metallothionein protein content, was markedly greater in the pyrene and heavy metal-polluted soils. Furthermore, the combined toxicity of pyrene and all three metals on M. sativa growth and biochemical parameters was significantly greater than that of pyrene, Zn, Pb, or Cd alone, indicating the synergistic effect of pyrene and heavy metals on cytotoxicity. Pyrene stress increased Cd accumulation in M. sativa. After pyrene exposure alone or in combination with Zn-pyrene, a greater pyrene removal rate (85.5-81.44%) was observed than that in Pb-pyrene, Cd-pyrene, and Zn-Pb-Cd-pyrene polluted soils (62.78-71.27%), indicating that zinc can enhance the removal of pyrene from contaminated soil. The resulting hypotheses demonstrated that Medicago sativa can be used as a promising phytoremediation agent for co-contaminated soil.

2.
3 Biotech ; 13(7): 251, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37388857

ABSTRACT

Environmental pollution caused by polycyclic aromatic hydrocarbons (PAHs) jeopardizes nature. PAHs are the most toxic, mutagenic, and carcinogenic pollutants and their cleanup is important for the environment. In the current research, to assess and evaluate three remediation strategies for pyrene removal from the soil, a pot experiment was performed: (a) bioremediation with Pseudomonas aeruginosa and Aspergillus oryzae, (b) phytoremediation with sunflower (Helianthus annuus) and alfalfa (Medicago sativa L.) and (c) microbial-assisted phytoremediation for the treatment of pyrene (700 mg kg-1). Results depict that P. aeruginosa significantly promoted the growth and tolerance of taken plants and reduced pyrene concentration in soil. Compared with those planted in pyrene-contaminated soil without inoculation. The highest percentage of pyrene removal was observed in P. aeruginosa inoculated alfalfa (91%), alfalfa inoculated with A. oryzae (83.96%), and without inoculation (78.20%). Moreover, alfalfa planted in P. aeruginosa augmented soil had the highest dehydrogenase activity (37.83 µg TPF g-1 soil h-1), and fluorescein diacetate hydrolysis (91.67 µg fluorescein g-1 dry soil). DHA and FDA are the indicators of bioaugmentation influence on the indigenous microbial activity of contaminated soil. As a result of the findings, the rhizospheric association of plants and microbes is beneficial for pyrene removal. Therefore, P. aeruginosa-assisted phytodegradation might be a more successful remediation technique for pyrene-contaminated soil than bioremediation and phytodegradation solely.

3.
Int J Phytoremediation ; 25(13): 1743-1761, 2023.
Article in English | MEDLINE | ID: mdl-36935611

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are semi-volatile anthropogenic contaminants that can damage soil fertility and threaten the environment due to their hazardous effects on various ecological parameters. The experimental objective was divided into two parts because PAHs are always present in mixtures. The toxicity of anthracene, phenanthrene, pyrene, and fluoranthene was examined and investigated the potential of three phytoremediator plants species viz Tagetes erecta, Helianthus annuus, and Medicago sativa for remediation and translocation of individual PAH. PAHs were shown to have inhibitory or stimulating effects on growth, antioxidant properties, and impact on the structure of plant cells. The result showed that M. sativa significantly enhances the removal rate of PAHs in the soil. The dissipation rate reached 96.2% in M. sativa planted soil, followed by H. annuus and T. erecta. Among the plant species, M. sativa exhibited the highest root and shoot concentrations (314.37 and 169.55 mg kg-1), while the lowest concentration was 187.56 and 76.60 mg kg-1 in T. erecta. SEM-EDX and fluorescence micrographs confirmed that pyrene altered plant tissue's ultrastructure and cell viability and was found to be the most toxic and resistant. M. sativa was proven to be the most effective plant for the mitigation of PAHs.


The novelty of our work situates phytoremediation into a practical viewpoint as to whether the process can be achieved within a measurable amount of time. In conclusion, Medicago sativa behaved as the more tolerant plant species in PAH-contaminated soil. While to the best of our knowledge, researchers have yet to study single contamination of PAH together, especially for phenanthrene and pyrene. We hope our study is fundamental and will help assess M. sativa as a potential phytoremediator plant for hydrocarbon-contaminated soil. Furthermore, this work is novel because the plant can remediate PAHs from industrial soil and agricultural fields. The harvested plant material can later be used for various purposes, such as biodegradable paper production. The higher dissipation of hydrocarbons measured in soil cultivated with M. sativa may be related to a large amount of soil bacteria stimulated explicitly by the M. sativa fibrous root system. Further studies are in progress to evaluate the possible degradation of PAH using microorganisms.


Subject(s)
Helianthus , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Tagetes , Polycyclic Aromatic Hydrocarbons/analysis , Medicago sativa , Biodegradation, Environmental , Soil Pollutants/analysis , Pyrenes , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...