Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 606(Pt 1): 837-847, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34425271

ABSTRACT

High-performance foldable metal-coated ionic polymer-metal nanocomposites (IPMNCs) with crack minimized electrode are desired for wearable electronics, energy harvesting devices, tactile sensors, structural health monitors, humidity sensors, and supercapacitor devices. However, the IPMNC shows the cracked structure that seriously decreases the performance of IPMNCs for sensors and actuators applications. To overcome the issue of the cracked metal electrode, here we propose a metal-coated hierarchical porous structured IPMNC via minimizing the cracks in the Platinum (Pt) electrode using attachment of poly(2-acrylamide-2-methyl-1-propane-sulfonic acid) (PAMPS) in poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE))/polyvinylpyrrolidone (PVP) blend. The crack-minimized Pt electrode deposition on PAMPS attached P(VDF-TrFE)/PVP-based IPMNCs showed enhanced electrical and sensing signals compared to the Nafion, ionic liquid, and polystyrene sulphonic acid-based IPMNCs. The developed IPMNCs with an optimized composition depict stable sensing signals up to 10,000 cycles. The hierarchical porous structure and the crack-minimized metal electrode on the P(VDF-TrFE)/PVP/PAMPS IPMNC can be utilized in various attractive applications such as energy harvesting, wearable electronics, humidity sensor, pulse, braille recognition, catalyst supports, bio-interfacing, and sensors.


Subject(s)
Nanocomposites , Wearable Electronic Devices , Electrodes , Polymers , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...