Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Front Vet Sci ; 11: 1389810, 2024.
Article in English | MEDLINE | ID: mdl-38725584

ABSTRACT

Cannabidiol (CBD) is a natural phytochemical agent and one of the most abundant found in Cannabis sativa. It is known to exhibit pharmacological properties on various condition such as relieving-inflammation, pain, epilepsy, and anxiety effect. There has been an increasing trend globally in the use of CBD as a supplement in pets. Consequently, there are various CBD products being marketed that are specifically available for pets. Veterinarians and pet owners are concerned that following ingestion, different CBD formulations may result in a CBD level circulating in the blood that may affect the safe use and efficacy of CBD in pets. Several pharmacokinetics studies in animals have been mainly conducted with an oily form of CBD. To date, there is a lack of data regarding direct comparisons in animals among the CBD plasma kinetic profiles from an oral administration of the various preparation forms. Therefore, the current study evaluated and compared the plasma CBD levels from a single oral administration using four different CBD preparations-liquid (an oil-based form, a nanoemulsion form, or a water-soluble form) or a semi-solid form (as CBD mixed in a treat) in dogs. In total, 32 healthy, crossbreed dogs were randomly assigned into 4 groups and treated according to a 1-period, 4-treatment parallel-design. The three liquid forms were dosed at 5 mg/kg body weight, while the single semi-solid form was given at 50 mg/treat/dog. The results showed that the CBD plasma profile from the administration of a water-soluble form was comparable to that of the oil-based group. The nanoemulsion-based form tended to be rapidly absorbed and reached its peak sooner than the others. However, the CBD in all preparations reached the maximum plasma concentration within 3 h post-dose, with an average range of 92-314 µg/L. There were significant differences among certain parameters between the liquid and semi-solid forms. This was the first study to provide pharmacokinetics data regarding CBD in water soluble, nanoemulsion-based, and semi-solid forms for dogs as companion animals. The current data should facilitate the scrutiny of CBD plasma profiles based on different formulations via an oral route in dogs.

2.
BMC Res Notes ; 16(1): 296, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891687

ABSTRACT

OBJECTIVE: Studies have shown that Flavivirus infection remodels the host cell to favour viral replication. In particular, the host cell lipid profile is altered, and it has been proposed that this process alters membrane fluidity to allow wrapping of the outer structural proteins around the viral nucleocapsid. We investigated whether expression of the Zika virus (ZIKV) and dengue virus (DENV) protease induced alterations in the cellular lipid profile, and subsequently whether co-expression of these proteases with VLP constructs was able to improve VLP yield. RESULTS: Our results showed that both ZIKV and DENV proteases induced alterations in the lipid profile, but that both active and inactive proteases induced many of the same changes. Neither co-transfection of protease and VLP constructs nor bicistronic vectors allowing expression of both protease and VLP separated by a cell cleavable linker improved VLP yield, and indeed many of the constructs showed significantly reduced VLP production. Further work in developing improved VLP expression platforms is required.


Subject(s)
Dengue Virus , Zika Virus Infection , Zika Virus , Humans , Zika Virus/genetics , Dengue Virus/genetics , Viral Nonstructural Proteins/genetics , Peptide Hydrolases , Lipids
3.
Foods ; 12(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37761183

ABSTRACT

Herein, the effect of supplementing ground sago palm trunk (GSPT) with varying concentrations of plant-based ingredients (PIs), including rice bran (RB), soybean meal (SM), and perilla seed (PS), on the nutritional profile of sago palm weevil larvae (SPWL) was investigated. Increased PS intake induced an increase in α-linolenic acid level and a reduction in the n-6/n-3 ratio in SPWL (p < 0.05). The presence of fatty acids in SPWL was determined predominantly by the fatty acid profile in the feed. The activities of Δ5 + Δ6 desaturases and thioesterase were not different among SPWL fed different diets (p < 0.05); however, PI intake resulted in low suppression of fads2 gene expression. RB, SM, and PS at the appropriate concentrations of 17.5%, 8.8%, and 7.0% in GSPT (F3 diet), respectively, boosted both protein quantity and quality of SPWL, as indicated by higher levels of essential amino acids, particularly lysine, than the FAO protein reference. Therefore, incorporating PIs into a regular diet is a viable method for enhancing the nutritional value and sustainability of farm-raised SPWL as a potential alternative source of high-quality lipid and protein.

4.
Polymers (Basel) ; 14(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36501723

ABSTRACT

The tail tendons of skipjack tuna (Katsuwonus pelamis), a by-product from the meat-separation process in canned-tuna production, was used as an alternative source of collagen extraction. The acid-solubilized collagens using vinegar (VTC) and acetic-acid (ATC) extraction and pepsin-solubilized collagen (APTC) were extracted from tuna-tail tendon. The physiochemical properties and characteristics of those collagens were investigated. The obtained yield of VTC, ATC, and APTC were 7.88 ± 0.41, 8.67 ± 0.35, and 12.04 ± 0.07%, respectively. The determination of protein-collagen solubility, the effect of pH and NaCl on collagen solubility, Fourier-transform infrared spectroscopy (FTIR) spectrum, and microstructure of the collagen-fibril surface using a scanning electron microscope (SEM) were done. The protein solubility of VTC, ATC, and APTC were 0.44 ± 0.03, 0.52 ± 0.07, and 0.67 ± 0.12 mg protein/mg collagen. The solubility of collagen decreased with increasing of NaCl content. These three collagens were good solubility at low pH with the highest solubility at pH 5. The FTIR spectrum showed absorbance of Amide A, Amide B, Amide I, Amide II, and Amide III groups as 3286-3293 cm-1, 2853-2922 cm-1, 1634-1646 cm-1, 1543-1544 cm-1, and 1236-1237 cm-1, respectively. The SEM analysis indicated a microstructure of collagen surface as folding of fibril with small pore.

5.
Front Plant Sci ; 13: 1008917, 2022.
Article in English | MEDLINE | ID: mdl-36340360

ABSTRACT

Holy basil (Ocimum Tenuiflorum L.) is a widely used herb containing several bioactive compounds of interest for the food and pharmaceutical industries. Plant factories using artificial lighting (PFAL) is a modern agricultural system that offers opportunity to improve crop production and stabilizes productivity in many herbal plants. However, little is known about the variation among holy basil varieties that can be cultivated and provide reasonable biomass and bioactive compounds in PFAL. We therefore evaluated 10 Thai accessions and two commercial cultivars in a PFAL (with hydroponic cultivation) to categorize cultivar characteristics by investigating physiological responses and secondary metabolite variation at plant flowering stage. Among Thai varieties, net photosynthetic rate (Pn) was significantly highest in varieties OC059 and OC081. The greatest growth and biomass measures were observed in OC064. Antioxidant capacity also varied, with the greatest accumulation of total phenolic compounds (TPC), flavonoids, and antioxidant activity by DPPH assay in OC064, and highest terpenoid content in OC194. The accumulation of major compounds confirmed by showing the highest levels of eugenol in OC057, OC063, OC194, and OC195 and methyl eugenol in OC072 and OC081. The highest α-humulene content was found in OC059. PCA based on physiological responses and secondary metabolites indicate that OC064 was clearly distinguished from other cultivars/accessions. These findings demonstrate variation across holy basil accessions for physiologic responses, antioxidant capacity, and secondary compounds in PFAL. These insights lead to identification of suitable varieties which is the most important step of developing an efficient method for producing high quality raw materials of Thai holy basil for supplying the foods and pharmaceutical industries.

6.
Foods ; 11(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36360054

ABSTRACT

Both microbial decomposition and oxidative deterioration contribute to the qualitative degradation of fresh or minimally preserved fish, which negatively impacts the shelf-life of fish, especially those with dark flesh like mackerel. It is becoming more typical to use edible coatings to preserve the freshness of fish products. Herein, the effects of a rice starch (RS) based coating incorporated with dried crude, aqueous Mon-pu (Glochidion wallichianum) leaf extract (MPE) at varying concentrations (0, 0.02, 0.1, 0.5, and 1.0% w/w) on the quality characteristics of mackerel (Auxis thazard) slices during storage at 4 °C were investigated. Uncoated slices had a shelf-life of 6 days, whereas samples coated with RS and 0.5% MPE extended the shelf-life to 9 days by keeping the overall microbiological quality below the permitted level of 6 log CFU/g. The changes in thiobarbituric acid reactive substances (TBARS; <2 mg malondialdehyde equivalent/kg), propanal content, heme iron degradation, myoglobin redox instability, and surface discoloration (a* value and total color difference; ΔE) can all be delayed by this coating condition. Additionally, the RS-MPE coating can maintain the sensory quality of refrigerated mackerel slices and preserve the textural property (water holding capacity and hardness), as well as postpone the development of an off-odor as indicated by lowered contents of total volatile base-nitrogen (TVB-N; not exceeding the acceptable limit of 25 mg/100 g) and trimethylamine (TMA; not exceeding the acceptable limit of 10 mg/100 g). Therefore, a biopreservative coating made of RS and MPE, especially at 0.5%, can be employed to extend the shelf-life of refrigerated mackerel slices up to 9 days.

7.
Plants (Basel) ; 11(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36297750

ABSTRACT

This study aims to identify novel chitosan (CTS)-responsive phosphoproteins in Leung Pratew 123 (LPT123) and Khao Dawk Mali 105 (KDML105) as drought-sensitive rice cultivars and differences in the CTS response. Rice seeds were soaked in CTS solution before germination, and 2- and 4-week-old rice seedlings sprayed with CTS before osmotic stress comprised the following four groups: (1) seedlings treated with distilled water; (2) seedlings treated with CTS; (3) seedlings pretreated with distilled water and subjected to osmotic stress; and (4) seedlings pretreated with CTS and subjected to osmotic stress. Phosphoproteins of leaf tissues were enriched using immobilized metal affinity chromatography (IMAC) before tryptic digestion and analysis via LC-MS. Phosphoprotein profiling analyses led to the identification of 4721 phosphoproteins representing 1052 and 1040 unique phosphoproteins in the LPT123 and KDML105 seedlings, respectively. In response to CTS pretreatment before osmotic stress, 22 differently expressed proteins were discovered, of which 10 and 12 were identified in the LPT123 and KDML105, respectively. These proteins are typically involved in signaling, transport, protein folding, protein degradation, and metabolism. This study provides fruitful data to understand the signal transduction mechanisms of rice seedlings pretreated with CTS before exposure to osmotic stress.

8.
Front Nutr ; 9: 934842, 2022.
Article in English | MEDLINE | ID: mdl-36159495

ABSTRACT

Sweet pickled mango named Ma-Muang Bao Chae-Im (MBC), a delicacy from the Southern part of Thailand, has a unique aroma and taste. The employed immersion processes (brining 1, brining 2, and immersion in a hypertonic sugar solution, sequentially) in the MBC production process bring changes to the unripe mango, which indicate the occurrence of metabolic profiles alteration during the production process. This occurrence was never been explored. Thus, this study investigated metabolic profile alteration during the MBC production process. The untargeted metabolomics profiling method was used to reveal the changes in volatile and non-volatile metabolites. Headspace solid-phase micro-extraction tandem with gas chromatography quadrupole time of flight (GC/QTOF) was employed for the volatile analysis, while metabolites derivatization for non-volatile analysis. In conclusion, a total of 82 volatile and 41 non-volatile metabolites were identified during the production process. Terpenes, terpenoids, several non-volatile organic acids, and sugars were the major mango metabolites that presented throughout the process. Gamma-aminobutyric acid (GABA) was only observed during the brining processes, which suggested the microorganism's stress response mechanism to an acidic environment and high chloride ions in brine. Esters and alcohols were abundant during the last immersion process, which had an important role in MBC flavor characteristics. The knowledge of metabolites development during the MBC production process would be beneficial for product development and optimization.

9.
Foods ; 11(14)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35885278

ABSTRACT

The nutritional value, growth performance, and lipid metabolism of sago palm weevil larvae (Rhynchophorus ferrugineus, SPWL) raised on plant-based diets (soybean, rice bran, and ground sago palm trunk (GSPT)), supplemented with various concentrations (0, 3, 7, 15, and 20%) of perilla seed (PS) were compared with traditional diets i.e., regular GSPT (control) and GSPT supplemented with pig feed. All supplemented diets rendered SPWL with higher lipid and protein contents (p < 0.05). Supplementing with 7−20% PS enhanced α-linoleic acid content in SPWL, resulting in a decrease in the n-6:n-3 ratio to a desirable level. Dietary PS supplementation increased Δ9 (18), total Δ9 and Δ5 + Δ6 desaturase indexes, fatty acid (FA) unsaturation, and the polyunsaturated FA:saturated FA ratio in SPWL, while lowering atherogenicity index, thrombogenicity index, and Δ6 desaturase (fads2) gene expression. Boosting with 7% PS improved the majority of growth parameters and enhanced essential amino acid and mineral contents (p < 0.05).

10.
Foods ; 11(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35804743

ABSTRACT

The quality characterization of different parts of male and female Ligor hybrid chickens was investigated and compared with those of commercial broiler. Genotypes, muscle types, and sex had effects on the composition, physicochemical, and textural properties of chicken samples. Ligor hybrid chicken contained higher percentages of protein, moisture, ash, and collagen content but lower fat content than those of commercial broiler (p < 0.05), except in the case of breast, where no significant difference in moisture and ash was observed (p ≥ 0.05). The pH in breast meat of both chickens was lower than that of thigh meat. The color (L*, a*, and b*) values of male and female chickens were not significantly different, except for the L* value of broiler chicken, which was higher in female chickens than in male chickens. Higher cooking loss and shear force were found in male Ligor hybrid chicken. A similar protein pattern was observed for the protein from the same muscle type, irrespective of sex and genotype tested. It was observed that Ligor hybrid chicken contained higher glutamic acid and aspartic acid than commercial broilers. Therefore, Ligor hybrid chicken is a promising new source of nutrition, which can be beneficial for consumers.

11.
Food Chem ; 393: 133354, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35667178

ABSTRACT

The nutritional values of sago palm weevil larvae (SPWL) reared on mixed plant-based diets (ground sago palm trunk (GS), cornmeal, rice bran, soybean, and perilla seed), containing different levels of dietary fish oil (FO) were compared to those reared on commercial pig feed (PF) and GS. Increased FO content resulted in an increase in ω-3 fatty acids (FA) in SPWL (p < 0.05), especially α-linolenic acid and eicosapentaenoic acid. When fed FO-fortified diets instead of PF, the health-promoting indices of the SPWL lipid improved significantly (e.g., decreased ω-6/ω-3 ratio, thrombogenicity index, and hypercholesterolemic FA with increased PUFA content). The lipid, protein, and mineral contents of SPWL were increased while growth performance was maintained on a 1.5% FO-fortified diet. Higher FO levels (3-5%) had a negative impact on the nutritional values and growth performance of the SPWL. Thus, there was a reasonable chance of developing a high-nutrient alternative insect for human consumption.


Subject(s)
Arecaceae , Fatty Acids, Omega-3 , Weevils , Animal Feed/analysis , Animals , Arecaceae/metabolism , Dietary Supplements , Eicosapentaenoic Acid , Fatty Acids/metabolism , Fatty Acids, Omega-3/metabolism , Fish Oils/metabolism , Larva/metabolism , Swine , Weevils/metabolism
12.
Foods ; 10(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34945494

ABSTRACT

The goal of this study was to establish the nutritional value and compositional properties of the brains of crossbred pigs (Landrace-Large white-Duroc (LLD)), in order to realize the zero-waste concept and increase the use of by-products in the sustainable meat industry. Fat (9.25% fresh weight (fw)) and protein (7.25% fw) were the principal dry matters of pig brain, followed by carbohydrate and ash. Phospholipid and cholesterol had a 3:1 ratio. Pig brain had a red tone (L* = 63.88, a* = 5.60, and b* = 15.43) and a high iron content (66 mg/kg) due to a total heme protein concentration of 1.31 g/100 g fw. The most prevalent macro-element was phosphorus (14 g/kg), followed by potassium, sodium, calcium, and magnesium. Zinc, copper, and manganese were among the other trace elements discovered. The most prevalent nitrogenous constituents were alkali-soluble protein, followed by water-soluble protein, stromal protein, salt-soluble protein, and non-protein nitrogen. Essential amino acids were abundant in pig brain (44% of total amino acids), particularly leucine (28.57 mg/g protein), threonine, valine, and lysine. The total lipid, neutral, and polar lipid fractions of the pig brain had different fatty acid compositions. The largest amount was observed in saturated fatty acids (SFA), followed by monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA). Stearic acid and palmitic acid were the most common SFA. Oleic acid was the most prevalent MUFA, while docosahexaenoic acid was the most common PUFA. Thus, the pig brain can be used in food formulations as a source of nutrients.

13.
iScience ; 24(11): 103355, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34805802

ABSTRACT

The current gold standard for classifying lupus nephritis (LN) progression is a renal biopsy, which is an invasive procedure. Undergoing a series of biopsies for monitoring disease progression and treatments is unlikely suitable for patients with LN. Thus, there is an urgent need for non-invasive alternative biomarkers that can facilitate LN class diagnosis. Such biomarkers will be very useful in guiding intervention strategies to mitigate or treat patients with LN. Urine samples were collected from two independent cohorts. Patients with LN were classified into proliferative (class III/IV) and membranous (class V) by kidney histopathology. Metabolomics was performed to identify potential metabolites, which could be specific for the classification of membranous LN. The ratio of picolinic acid (Pic) to tryptophan (Trp) ([Pic/Trp] ratio) was found to be a promising candidate for LN diagnostic and membranous classification. It has high potential as an alternative biomarker for the non-invasive diagnosis of LN.

14.
Foods ; 10(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34441618

ABSTRACT

The goal of this study was to examine the changes in chemical parameters, major volatile compounds, and sensory aspects in farm-raised hybrid catfish (i.e., dorsal, lateral line and ventral muscles) during a 15-day period of refrigerated storage. Trichloroacetic acid-soluble peptides, free fatty acid, total volatile base-nitrogen (TVB-N), and non-heme iron levels in all muscles increased as storage time proceeded. The levels of trans-1,10-dimethyl-trans-9-decalol (geosmin) and 2-methylisoborneol (2-MIB) were higher than their thresholds, which was connected to a stronger earthy odor. The concentrations of geosmin and 2-MIB in all muscles increased, although there was a consistent trend of earthy odor throughout storage; this phenomenon could be attributed to the masking effect of other off-odors. During storage, the largest lipid oxidation was found in ventral muscle, as measured by peroxide value and thiobarbituric acid reactive substances. During storage, the formation of the most volatile products increased in the lateral line and ventral muscle, whereas the dorsal muscle had the lowest concentration. As storage time proceeded, the strength of spoiled, fishy, rancid, and overall off-odor intensity of all tested muscles tended to rise. Those alterations were linked to higher levels of TVB-N and trimethylamine, as well as all other volatile lipid oxidation products (e.g., hexanal, propanal, 2,4 heptadienal, 1-octen-3-ol, octanal, nonanal, trans-2-heptenal, and 1-hexanol).

15.
Food Chem ; 364: 130365, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34153601

ABSTRACT

Earthy off-odour in farm-raised freshwater fish is considered a quality defect. This study aimed to investigate the potential of pH-shift processing to remove off-odours from farm-raised hybrid catfish while at the same time documenting de-novo formation of other volatile compounds. In comparison with crude mince and conventional surimi, the alkali pH-shift process gave larger reductions in geosmin, 2-methylisoborneol, undesirable volatile compounds (e.g. hexanal, (E)-2-nonenal, (E)-2-heptenal, 2-butanone, and hexadecane), lipids, myoglobin, total volatile basic nitrogen, and TCA-soluble peptides (p < 0.05). The acid-produced protein isolate showed the highest TBARS and processing-induced evolution of the following volatiles: octanal, nonanal, decanal, 2-butyl-2-octenal, pentadecanal, 1-hexanol, 1-octanol, 1-octen-3-ol, and 2,3-octanediol (p < 0.05). Alkali-aided process provided better overall gelling characteristics (i.e. breaking force, deformation, and texture profile) and gave lower fishy, earthy, and rancid off-odour scores (p < 0.05). Thus, alkali pH-shift process can be used to isolate gel-forming proteins from hybrid catfish while minimizing the accumulation of undesirable volatile compounds.


Subject(s)
Catfishes , Animals , Catfishes/genetics , Gels , Hydrogen-Ion Concentration , Odorants
16.
Food Chem ; 363: 130279, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34120049

ABSTRACT

Nutritional composition and growth performance of sago palm weevil larvae (SPWL) fed with ground sago palm trunk mixed with different supplements including commercial pig feed, rice bran, cornmeal, soybean meal, and perilla seed were evaluated. SPWL fed with supplemented diets were richer in protein, lipid, and mineral contents (p < 0.05). Marked increases in polyunsaturated fatty acids (10.75-fold) and omega-3 fatty acids (25.42-fold) with the lowest n-6:n-3 ratio, atherogenicity index, and thrombogenicity index were found in SPWL fed with perilla seed (p < 0.05). Perilla seed, cornmeal, and soybean meal improved essential amino acid content and essential amino acid index of SPWL. Growth performance varied, depending on feed compositions, where a comparable or even greater effect was observed in SPWL fed with supplemented diets compared to control. Therefore, plant-based supplements, especially perilla seed, efficiently improved nutritional quality of SPWL, making them more attractive in terms of nutritional and economical value.


Subject(s)
Weevils , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet , Dietary Supplements , Fatty Acids , Larva , Swine
17.
Animals (Basel) ; 10(12)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276466

ABSTRACT

Wooden breast (WB) abnormality adversely impacts the quality of chicken meat and has been linked with oxidative stress. In this study, breast samples were taken from carcasses of 7-week-old Ross 308 broilers 20-min and 24-h postmortem. Five WB and seven non-WB control samples were assigned based on palpatory hardness (non-WB = no unusual characteristics and WB = focal or diffused hardness). WB exhibited lower contents of protein and the amino acids, i.e., isoleucine, leucine and valine, lighter surface color, lower shear force, greater drip loss and altered mineral profiles (p ≤ 0.05). Despite no difference in lipid oxidation, a greater degree of protein oxidation was found in the WB meat (p ≤ 0.05). Absolute transcript abundances of superoxide dismutase, hypoxia inducible factor 1 alpha and pyruvate dehydrogenase kinase 1 were greater in WB (p ≤ 0.05), whereas lactate dehydrogenase A expression was lower in WB (p ≤ 0.05). The findings support an association between oxidative stress and the altered nutritional and technological properties of chicken meat in WB.

18.
J Agric Food Chem ; 68(35): 9568-9575, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32786852

ABSTRACT

A strange cutoff phenomenon of a series of protocatechuic acid alkyl esters had been noticed using the conjugated autoxidizable triene (CAT) assay. Two parabolic shapes of antioxidant activities of protocatechuic acid alkyl esters described as ″the double cutoff effect″ have been speculated as a result of an oxidative driving force generated in the aqueous phase. The aim of this research was to investigate the double cutoff effect using various types of oxidation driving forces in different CAT-based assays. To further explain the phenomenon, the natural oxidation of conjugated autoxidizable triene (NatCAT) assay has been developed for the first time by relying solely on only the lipid autoxidation of tung oil-in-water (O/W) emulsions. In conclusion, NatCAT exhibited different antioxidant and oxidation patterns from both CAT and apolar radical-initiated CAT assays, and only one cutoff point was obtained. This discovery would lead to a greater understanding of the complexity of antioxidant/lipid oxidation dynamics in O/W emulsion systems.


Subject(s)
Antioxidants/chemistry , Esters/chemistry , Hydroxybenzoates/chemistry , Emulsions/chemistry , Oxidation-Reduction , Plant Oils/chemistry
19.
J Nutr Sci Vitaminol (Tokyo) ; 66(Supplement): S206-S214, 2020.
Article in English | MEDLINE | ID: mdl-33612597

ABSTRACT

Oil blending is a method that may improve the nutritional profile and stability of frying oil. Tropical vegetable oils, including rice bran oil, coconut oil, and palm oil were blended at ratios of 20 : 20 : 60, 25 : 25 : 50, 30 : 30 : 40, and 35 : 35 : 30 (v/v/v), respectively, and tested for their performance in deep frying French fries at 180ºC for 8 h. The nutritional content of the blended oils increased with the rice bran oil and coconut oil ratio, including polyunsaturated fatty acids, α-tocopherol and γ-oryzanol. The physicochemical property changes, including color, viscosity, fatty acid profile, total polar compounds, free fatty acid, peroxide value, and the thiobarbituric acid reactive substances value of the blended oils were monitored during frying. The lightness of the oil blends was higher than those of palm oil after frying. However, the higher ratio of rice bran oil and coconut oil resulted in a higher increase in viscosity during frying. The oxidative stabilities of the oil blends were better than that of palm oil. Additionally, the sensory characteristics of the fries prepared in these oil blends were evaluated using a 9-point hedonic scale. There was no significant difference in sensory attributes of the fries produced using different oils. The oil blended at a ratio of 30 : 30 : 40 shows the greatest performance as a deep frying media compared to the other blended oils that were tested.


Subject(s)
Hot Temperature , Plant Oils , Cooking , Fatty Acids/analysis , Fatty Acids, Unsaturated , Rice Bran Oil
20.
J Agric Food Chem ; 65(34): 7509-7518, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28750167

ABSTRACT

The addition of antioxidants is one of the strategies to inhibit lipid oxidation, a major cause of lipid deterioration in foods leading to rancidity development and nutritional losses. However, several studies have been reported that conventional antioxidant assays, e.g., TPC, ABTS, FRAP, and ORAC could not predict antioxidant performance in several foods. This study aimed to investigate the performance of two recently developed assays, e.g., the conjugated autoxidizable triene (CAT) and the apolar radical-initiated conjugated autoxidizable triene (ApoCAT) assays to predict the antioxidant effectiveness of gallic acid and its esters in selected food models in comparison with the conventional antioxidant assays. The results indicated that the polarities of the antioxidants have a strong impact on antioxidant activities. In addition, different oxidant locations demonstrated by the CAT and ApoCAT assays influenced the overall antioxidant performances of the antioxidants with different polarities. To validate the predictability of the assays, the antioxidative performance of gallic acid and its alkyl esters was investigated in oil-in-water (O/W) emulsions, bulk soybean oils, and roasted peanuts as the lipid food models. The results showed that only the ApoCAT assay could be able to predict the antioxidative performances in O/W emulsions regardless of the antioxidant polarities. This study demonstrated that the relevance of antioxidant assays to food models was strongly dependent on physical similarities between the tested assays and the food structure matrices.


Subject(s)
Antioxidants/analysis , Chemistry Techniques, Analytical/methods , Esters/analysis , Food Additives/analysis , Gallic Acid/analysis , Emulsions/analysis , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...