Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e17608, 2024.
Article in English | MEDLINE | ID: mdl-38978756

ABSTRACT

According to our preliminary study, melatonin and its N-amide derivatives (N-(2-(1-4-bromobenzoyl-5-methoxy-1H-indol-3-yl)ethyl)acetamide (BBM) and 4-bromo-N-(2-(5-methoxy-1H-indol-3-yl)ethyl)benzamide (EBM)) inhibited the marker of acute inflammation in tests in vitro and in vivo. The anti-inflammatory agent is intended for the prevention and treatment of chemotherapy-induced toxicity. In this study aimed to evaluate the effect of melatonin and its derivatives on mechanisms related to chemotherapy-induced oral mucositis by in vitro ROS and 5-FU-induced human keratinocyte cells as well as in vivo oral mucositis model. In in vitro H2O2-induced HaCaT cells, BBM had the highest level of protection (34.57%) at a concentration 50 µM, followed by EBM (26.41%), and melatonin (7.9%). BBM also protected cells against 5-FU-induced to 37.69-27.25% at 12.5-100 µM while EBM was 36.93-29.33% and melatonin was 22.5-11.39%. In in vivo 5-FU-induced oral mucositis in mice, melatonin, BBM, and EBM gel formulations protected tissue damage from 5-FU similar to the standard compound, benzydamine. Moreover, the weight of mice and food consumption recovered more quickly in the BBM group. These findings suggested that it was possible to develop BBM and EBM as new therapeutic agents for the treatment of oral mucositis.


Subject(s)
Melatonin , Stomatitis , Melatonin/pharmacology , Melatonin/therapeutic use , Stomatitis/chemically induced , Stomatitis/drug therapy , Stomatitis/prevention & control , Stomatitis/pathology , Animals , Humans , Mice , Keratinocytes/drug effects , Fluorouracil/adverse effects , Fluorouracil/toxicity , Male , Reactive Oxygen Species/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology
2.
Plants (Basel) ; 12(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36771687

ABSTRACT

Plants are a rich source of phytochemical compounds with antioxidant activity. Several studies have revealed that the consumption of plant polyphenols reduces the risk of diseases. Purple corn (Zea mays L. variety KND) and butterfly pea (Clitoria ternatea; CT) were selected to be investigated as alternative natural polyphenol sources to increase the value of these plants. Phytochemical profiles and antioxidant activities of KND cob, silk, husk and CT extracts alone and in combination were investigated in this study. The results revealed that purple corn cob (C) extract had the highest tryptophan, melatonin, total anthocyanin (TAC) and delphinidin content, while the purple corn silk (S) extract showed the highest total phenolic content (TPC) and antioxidant activities. Serotonin was found only in purple corn husk (H) extract and C extract. High contents of tryptophan and sinapic acid were found in CT extract. Principal component analysis (PCA) revealed that strong antioxidant activities were strongly correlated with protocatechuic acid and p-hydroxybenzoic acid contents, moderate antioxidant activities were strongly correlated with melatonin, and low antioxidant activities were strongly correlated with sinapic acid content. Therefore, the purple corn variety KND waste cobs, silk and husks are a potentially rich source of health-promoting phytochemical compounds.

3.
Plants (Basel) ; 11(21)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36365443

ABSTRACT

Mung bean (Vigna radiata L.) sprouts are increasingly consumed and have become part of a healthy diet. The sprouts are composed of proteins, carbohydrates, and biochemical compounds. During germination, the phytochemical compounds are significantly elevated, especially under stress conditions such as salinity, drought, extreme temperature, and illumination. The present study examined the effects of light and germination time on the bioactive compounds in mung bean sprout extracts. Mung bean seeds were sprouted under different light exposure conditions, and the phytochemical composition and antioxidant activity of sprout extracts were determined compared to seeds. The results show that tryptophan sharply decreased during germination. On the contrary, melatonin, polyphenols, and total phenolic content (TPC) were elevated with increased germination time, correlated with increased antioxidant activity. Sprouts germinated in the dark presented higher levels of melatonin and TPC compared with those germinated under 12 h light exposure (3.6- and 1.5-fold, respectively). In conclusion, germination can enhance valuable phytochemicals and antioxidant activity of mung bean sprouts. Mung bean sprouts may be a good alternative functional food for promoting human health.

4.
Molecules ; 27(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35956928

ABSTRACT

Mulberry (Morus alba L.) leaves from two cultivars, Yai-Burirum (YB) and Khunphai (KP), were prepared into green tea (GT) and black tea (BT). Compared to fresh leaf (FL) extract, GT and BT extracts were evaluated for their total phenolic and total flavonoid contents. Total phenolic content (TPCs) in all samples ranged between 129.93 and 390.89 mg GAE/g extract. The processing of tea decreased the levels of TPC when compared to FL extracts in both cultivars. The total flavonoid content (TFCs) in all samples was found in the range of 10.15-39.09 mg QE/g extract and TFCs in GT and BT extracts were higher than FL extracts. The change in tryptophan, melatonin, phenolic and flavonoid contents was investigated by liquid chromatography-mass spectroscopy (LC-MS). The results exhibited that tryptophan contents in all samples were detected in the range 29.54-673.72 µg/g extract. Both GT and BT extracts increased tryptophan content compared to FL extracts. BT extracts presented the highest amounts of tryptophan among others in both cultivars. Phenolic compounds were found in mulberry leaf extracts, including gallic acid, caffeic acid, gentisic acid, protocatechuic acid and chlorogenic acid. Chlorogenic acid presented the highest amount in all samples. Almost all phenolic acids were increased in the processed tea extracts except chlorogenic acid. Rutin was the only flavonoid that was detected in all extracts in the range 109.48-1009.75 mg/g extract. The change in phenolic and flavonoid compounds during tea processing resulted in the change in antioxidant capacities of the GT and BT extracts. All extracts presented acetylcholinesterase enzyme (AChE) inhibitory activity with IC50 in the range 146.53-165.24 µg/mL. The processing of tea slightly increased the AChE inhibitory effect of GT and BT extracts. In conclusion, processed tea from mulberry leaves could serve as a new alternative functional food for health-concerned consumers because it could be a promising source of tryptophan, phenolics and flavonoids. Moreover, the tea extracts also had antioxidative and anti-AChE activities.


Subject(s)
Melatonin , Morus , Plant Leaves , Acetylcholinesterase , Antioxidants/pharmacology , Chlorogenic Acid/analysis , Chromatography, Liquid , Flavonoids/pharmacology , Melatonin/analysis , Morus/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Tandem Mass Spectrometry , Tea , Tryptophan
5.
Molecules ; 26(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34299559

ABSTRACT

The pineal gland is a neuroendocrine organ that plays an important role in anti-inflammation through the hormone melatonin. The anti-inflammatory effects of melatonin and its derivatives have been reported in both in vitro and in vivo models. Our previous study reported the potent antioxidant and neuroprotective activities of bromobenzoylamide substituted melatonin. In silico analysis successfully predicted that melatonin bromobenzoylamid derivatives were protected from metabolism by CYP2A1, which is a key enzyme of the melatonin metabolism process. Therefore, the anti-inflammatory activities of melatonin and its bromobenzoylamide derivatives BBM and EBM were investigated in LPS-induced RAW 264.7 macrophages and croton oil-induced ear edema in mice. The experiments showed that BBM and EBM significantly reduced production of the inflammatory mediators interleukin-6 (IL-6), prostaglandin E2 (PGE2), and nitric oxide (NO) in a dose-dependent manner, but only slightly affected TNF-α in LPS-induced RAW 264.7 macrophages. This suggests that modifying melatonin at either the N1-position or the N-acetyl side chain affected production of NO, PGE2 and IL-6 in in vitro model. In the croton oil-induced mouse ear edema model, BBM, significantly decreased ear edema thickness at 2-4 h. It leads to conclude that bromobenzoylamide derivatives of melatonin may be one of the potential candidates for a new type of anti-inflammatory agent.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Edema/drug therapy , Melatonin/analogs & derivatives , Melatonin/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Benzoates/chemistry , Benzoates/pharmacology , Croton Oil , Edema/chemically induced , Halogenation , Lipopolysaccharides , Male , Melatonin/therapeutic use , Mice , Mice, Inbred ICR , RAW 264.7 Cells
6.
Curr Drug Deliv ; 17(3): 195-206, 2020.
Article in English | MEDLINE | ID: mdl-31969103

ABSTRACT

BACKGROUND: Glutaryl melatonin, which is synthesized from melatonin and is a pineal glandderived neurohormone with anti-inflammatory and anti-oxidant properties, was comparatively investigated for its potential use as a topical anti-inflammatory agent. OBJECTIVE: Glutaryl melatonin, synthesized and screened for in vitro anti-candidiasis and in vitro and in vivo anti-inflammatory activities, was formulated as a niosome gel for topical oral evaluation in 5- fluorouracil-induced oral mucositis in mice. METHODS: In vitro anti-fungal activity in Candida albicans, in vitro anti-inflammatory activity in Escherichia coli liposaccharide-induced RAW cells and in vivo anti-inflammatory activity using a croton oilinduced ear edema model in ICR mice were investigated. Mucositis in mice (n= 6/group, 10-week-old mice) was induced by intraperitoneal injections of 5-fluorouracil, and the mice were subjected to a topical oral application of niosome gel containing melatonin (2% w/w) or glutaryl melatonin (2% w/w) and were compared with mice subjected to blank, fluocinolone acetonide (0.5% w/w) and control conditions. RESULTS: Glutaryl melatonin, at a 14.2 mM concentration, showed the highest fungicidal effect on C. albicans using the broth dilution method, indicating a nonsignificant difference from 1 µM of nystatin (p = 0.05). Nitric oxide, interleukin-6 and tumor necrosis factors were analyzed by ELISA. Liposaccharide-induced RAW cells were significantly reduced by glutaryl melatonin (p < 0.01). Ear edema inhibition of glutaryl melatonin was significant 1 h after application compared with that of melatonin (p = 0.03). Food consumption and body weight of the 5-fluorouracil-treated mice were significantly lower than those of the normal mice before all treatments (p < 0.05). Differences in the amount of licking behavior, which were observed in the control group for 5 min, were noticeable in the 5- fluorouracil-treated mice but not in the mice treated with the glutaryl melatonin niosome gel. CONCLUSION: Glutaryl melatonin exhibited mild anti-candidiasis and anti-inflammatory properties. The incorporation of glutaryl melatonin in a niosome gel formulation, demonstrated the potential for topical oral applications to reduce oral discomfort caused by 5-fluorouracil treatment in mice.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antifungal Agents/administration & dosage , Candidiasis/drug therapy , Edema/drug therapy , Melatonin/analogs & derivatives , Melatonin/administration & dosage , Stomatitis/drug therapy , Administration, Topical , Anhydrides/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Antifungal Agents/chemistry , Candida albicans/drug effects , Candida albicans/growth & development , Drug Liberation , Fluorouracil , Gels , Glutarates/chemistry , Liposomes , Male , Melatonin/chemistry , Mice , Mice, Inbred ICR , RAW 264.7 Cells , Stomatitis/chemically induced
7.
Int J Tryptophan Res ; 13: 1178646920978245, 2020.
Article in English | MEDLINE | ID: mdl-33402831

ABSTRACT

Melatonin (MLT) is a well-known pineal hormone possessed with remarkable biological activities. However, its low oral bioavailability and high first-pass metabolism rate are important pharmacokinetics problems. Therefore, 5 MLT derivatives (1-5) were designed and synthesised in our group to solve these problems. In this work, in silico analysis of all synthetic derivatives for pharmacokinetic and drug-likeness parameters were predicted by SwissADME software. The results revealed that all derivatives (1-5) met the requirements for ideal oral bioavailability and CNS drugs. The molecular docking showed that the acetyl-MLT derivative (1) and the un-substitution at N1-position derivative 5 would be substrates of CYP1A2, while the lipophilic substituted N1-position derivatives 2-4 could not be metabolised by CYP1A2. Moreover, all N-amide derivatives (1-4) were hydrolysed and released less than 2.33% MLT after 4-hour incubation in 80% human plasma. It seemed that these derivatives preferred to behave like drugs rather than prodrugs of MLT. These findings confirmed that the addition of bulky groups at the N1-position of the MLT core could prolong the half-life, increase drug absorption and penetrate the blood brain barrier into the CNS.

SELECTION OF CITATIONS
SEARCH DETAIL
...