Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 18(6): 948-58, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21151024

ABSTRACT

p75 neurotrophin receptor (p75NTR) belongs to the TNF-receptor superfamily and signals apoptosis in many cell settings. In human epidermis, p75NTR is mostly confined to the transit-amplifying (TA) sub-population of basal keratinocytes. Brain-derived neurotrophic factor (BDNF) or neurotrophin-4 (NT-4), which signals through p75NTR, induces keratinocyte apoptosis, whereas ß-amyloid, a ligand for p75NTR, triggers caspase-3 activation to a greater extent in p75NTR transfected cells. Moreover, p75NTR co-immunoprecipitates with NRAGE, induces the phosphorylation of c-Jun N-terminal kinase (JNK) and reduces nuclear factor kappa B (NF-κB) DNA-binding activity. p75NTR also mediates pro-NGF-induced keratinocyte apoptosis through its co-receptor sortilin. Furthermore, BDNF or ß-amyloid cause cell death in TA, but not in keratinocyte stem cells (KSCs) or in p75NTR silenced TA cells. p75NTR is absent in lesional psoriatic skin and p75NTR levels are significantly lower in psoriatic than in normal TA keratinocytes. The rate of apoptosis in psoriatic TA cells is significantly lower than in normal TA cells. BDNF or ß-amyloid fail to induce apoptosis in psoriatic TA cells, and p75NTR retroviral infection restores BDNF- or ß-amyloid-induced apoptosis in psoriatic keratinocytes. These results demonstrate that p75NTR has a pro-apoptotic role in keratinocytes and is involved in the maintenance of epidermal homeostasis.


Subject(s)
Apoptosis , Keratinocytes/metabolism , Psoriasis/metabolism , Receptor, Nerve Growth Factor/metabolism , Signal Transduction , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Amyloid beta-Peptides , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Cell Line , Enzyme Activation/genetics , Humans , Keratinocytes/pathology , NF-kappa B/genetics , NF-kappa B/metabolism , Psoriasis/genetics , Receptor, Nerve Growth Factor/genetics
2.
Int J Cosmet Sci ; 28(4): 255-61, 2006 Aug.
Article in English | MEDLINE | ID: mdl-18489265

ABSTRACT

Melanocytes and cells of the nervous system are of common ectodermal origin and neurotrophins (NT) have been shown to be released by human keratinocytes. We investigated the expression and function of NT [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT-3, NT-4/-5] and their receptors in human melanocytes. Human melanocytes produce all NT in different amounts, whereas they only release NT-4. NT-4 release is downregulated, whereas NT-3 is upregulated by ultraviolet (UVB) irradiation. Melanocytes treated with phorbol 12-myristate 13-acetate (PMA) express TrkA and TrkB, but not TrkC. NT fail to stimulate melanocyte proliferation, whereas they stimulate the synthesis of tyrosinase and tyrosinase-related protein-1 (TRP-1). Finally, NT-3, NT-4 and NGF increase melanin production. Taken together, these results demonstrate an intriguing interaction between melanocytes and the nervous system. We speculate that NT could be considered the target of therapy for disorders of skin pigmentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...