Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 9: 682083, 2021.
Article in English | MEDLINE | ID: mdl-34368132

ABSTRACT

In the developing Drosophila abdomen, the epithelial tissue displays extensive cytoskeletal remodeling. In stark contrast to the spatio-temporal control of the actin cytoskeleton, the regulation of microtubule architecture during epithelial morphogenesis has remained opaque. In particular, its role in cell motility remains unclear. Here, we show that minus-end binding protein Patronin is required for organizing microtubule arrays in histoblast cells that form the Drosophila abdomen. Loss of Patronin results in a dorsal cleft, indicating the compromised function of histoblasts. We further show that Patronin is polarized in these cells and is required for the formation of highly dynamic non-centrosomal microtubules in the migrating histoblasts. Thus, our study demonstrates that regulation of microtubule cytoskeleton through Patronin mediates epithelium remodeling.

2.
Mol Biol Cell ; 27(22): 3616-3626, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27535428

ABSTRACT

Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract. Although several methods exist that analyze changes in filopodial shape, a software solution to reliably correlate growth dynamics with spatially resolved protein concentration along the filopodium independent of bending, lateral shift, or tilting is missing. Here we introduce a novel approach based on the convex-hull algorithm for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Detailed in silico tests using various geometries confirm that our technique accurately tracks growth dynamics and relative protein concentration along the filopodial length for a broad range of signal distributions. To validate our technique in living cells, we measure filopodial dynamics and quantify spatiotemporal localization of filopodia-associated proteins during the filopodial extension-retraction cycle in a variety of cell types in vitro and in vivo. Together these results show that the technique is suitable for simultaneous analysis of growth dynamics and spatiotemporal protein enrichment along filopodia. To allow readily application by other laboratories, we share source code and instructions for software handling.


Subject(s)
Image Processing, Computer-Assisted/methods , Pseudopodia/physiology , Statistics as Topic/methods , Actins/metabolism , Algorithms , Cell Shape/physiology , Computer Simulation , Pseudopodia/metabolism , Software , Spatio-Temporal Analysis
3.
Sci Rep ; 6: 19160, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26785994

ABSTRACT

Conformational changes in the envelope proteins of flaviviruses help to expose the highly conserved fusion peptide (FP), a region which is critical to membrane fusion and host cell infection, and which represents a significant target for antiviral drugs and antibodies. In principle, extended timescale atomic-resolution simulations may be used to characterize the dynamics of such peptides. However, the resultant accuracy is critically dependent upon both the underlying force field and sufficient conformational sampling. In the present study, we report a comprehensive comparison of three simulation methods and four force fields comprising a total of more than 40 µs of sampling. Additionally, we describe the conformational landscape of the FP fold across all flavivirus family members. All investigated methods sampled conformations close to available X-ray structures, but exhibited differently populated ensembles. The best force field / sampling combination was sufficiently accurate to predict that the solvated peptide fold is less ordered than in the crystallographic state, which was subsequently confirmed via circular dichroism and spectrofluorometric measurements. Finally, the conformational landscape of a mutant incapable of membrane fusion was significantly shallower than wild-type variants, suggesting that dynamics should be considered when therapeutically targeting FP epitopes.


Subject(s)
Flavivirus , Models, Molecular , Peptides/chemistry , Protein Conformation , Viral Fusion Proteins/chemistry , Circular Dichroism , Molecular Dynamics Simulation , Peptides/metabolism , Protein Folding , Spectrometry, Fluorescence , Viral Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...