Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996085

ABSTRACT

A strain engineering strategy is crucial for designing a high-performance catalyst. However, how to control the strain in metastable phase two-dimensional (2D) materials is technically challenging due to their nanoscale sizes. Here, we report that cerium dioxide (CeO2) is an ideal loading material for tuning the in-plane strain in 2D metastable 1T-phase IrO2 (1T-IrO2) via an in situ growth method. Surprisingly, 5% CeO2 loaded 1T-IrO2 with 8% compressive strain achieves an overpotential of 194 mV at 10 mA cm-2 in a three-electrode system. It also retained a high current density of 900 mA cm-2 at a cell voltage of 1.8 V for a 400 h stability test in the proton-exchange membrane device. More importantly, the Fourier transform infrared measurements and density functional theory calculation reveal that the CeO2 induced strained 1T-IrO2 directly undergo the *O-*O radical coupling mechanism for O2 generation, totally different from the traditional adsorbate evolution mechanism in pure 1T-IrO2. These findings illustrate the important role of strain engineering in paving up an optimal catalytic pathway in order to achieve robust electrochemical performance.

2.
Nano Lett ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837959

ABSTRACT

Propane dehydrogenation (PDH) serves as a pivotal intentional technique to produce propylene. The stability of PDH catalysts is generally restricted by the readsorption of propylene which can subsequently undergo side reactions for coke formation. Herein, we demonstrate an ultrastable PDH catalyst by encapsulating PtIn clusters within silicalite-1 which serves as an efficient promoter for olefin desorption. The mean lifetime of PtIn@S-1 (S-1, silicalite-1) was calculated as 37317 h with high propylene selectivity of >97% at 580 °C with a weight hourly space velocity (WHSV) of 4.7 h-1. With an ultrahigh WHSV of 1128 h-1, which pushed the catalyst away from the equilibrium conversion to 13.3%, PtIn@S-1 substantially outperformed other reported PDH catalysts in terms of mean lifetime (32058 h), reaction rates (3.42 molpropylene gcat-1 h-1 and 341.90 molpropylene gPt-1 h-1), and total turnover number (14387.30 kgpropylene gcat-1). The developed catalyst is likely to lead the way to scalable PDH applications.

3.
Nano Lett ; 24(25): 7645-7653, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38875704

ABSTRACT

Understanding the nucleation and growth mechanism of 3d transition bimetallic nanocrystals (NCs) is crucial to developing NCs with tailored nanostructures and properties. However, it remains a significant challenge due to the complexity of 3d bimetallic NCs formation and their sensitivity to oxygen. Here, by combining in situ electron microscopy and synchrotron X-ray techniques, we elucidate the nucleation and growth pathways of Fe-Ni NCs. Interestingly, the formation of Fe-Ni NCs emerges from the assimilation of Fe into Ni clusters together with the reduction of Fe-Ni oxides. Subsequently, these NCs undergo solid-state phase transitions, resulting in two distinct solid solutions, ultimately dominated by γ-Fe3Ni2. Furthermore, we deconvolve the interplays between local coordination and electronic state concerning the growth temperature. We directly visualize the oxidation-state distributions of Fe and Ni at the nanoscale and investigate their changes. This work may reshape and enhance the understanding of nucleation and growth in atomic crystallization.

4.
ACS Appl Mater Interfaces ; 16(27): 34437-34449, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38940318

ABSTRACT

Harvesting solar energy to produce value-added chemicals from carbon dioxide (CO2) presents a promising route for addressing the complexities of sustainable energy systems and environmental issues. In this context, the development of metal-coordinated porous organic polymers (POPs) offers a vital avenue for improving the photocatalytic performance of organic motifs. The current study presents a metal-integrated photocatalytic system (namely, Zn@BP-POP) developed via a one-pot Friedel-Crafts (F.C.) acylation strategy, for solid-gas phase photochemical CO2 reduction to CO (CO2RR). The postsynthetic incorporation of metal (Zn) active sites on the host polymeric backbone of BP-POP significantly influences the catalytic activity. Notably, Zn@BP-POP demonstrates good photocatalytic performance in the absence of any cocatalyst and photosensitizer yielding CO while impeding the competitive hydrogen evolution reaction (HER) from water. The experimental findings collectively propose that the observed catalytic activity and selectivity arise from the synergistic interplay between the singular zinc catalytic centers and the light-harvesting capacity of the highly conjugated polymeric backbone. Further, X-ray absorption spectroscopy (XAS) analysis has significantly highlighted the prominent role played by the ZnN2O4 single sites in the polymeric framework for activating the gaseous CO2 molecules. Further, time-dependent density functional theory (DFT) analysis also reveals the thermodynamic feasibility of CO2RR over HER under optimized reaction conditions. This work cumulatively presents an effective strategy to demonstrate the importance of metal-active sites and effectively establish their structure-activity relationship during photocatalysis.

5.
Adv Mater ; : e2404772, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822811

ABSTRACT

While high-entropy alloys, high-entropy oxides, and high-entropy hydroxides, are advanced as a novel frontier in electrocatalytic oxygen evolution, their inherent activity deficiency poses a major challenge. To achieve the unlimited goal to tailor the structure-activity relationship in multicomponent systems, entropy-driven composition engineering presents substantial potential, by fabricating high-entropy anion-regulated transition metal compounds as sophisticated oxygen evolution reaction electrocatalysts. Herein, a versatile 2D high-entropy metal phosphorus trisulfide is developed as a promising and adjustable platform. Leveraging the multiple electron couplings and d-p orbital hybridizations induced by the cocktail effect, the exceptional oxygen evolution catalytic activity is disclosed upon van der Waals material (MnFeCoNiZn)PS3, exhibiting an impressively low overpotential of 240 mV at a current density of 10 mA cm-2, a minimal Tafel slope of 32 mV dec-1, and negligible degradation under varying current densities for over 96 h. Density functional theory calculations further offer insights into the correlation between orbital hybridization and catalytic performance within high-entropy systems, underscoring the contribution of active phosphorus centers on the substrate to performance enhancements. Moreover, by achieving electron redistribution to optimize the electron coordination environment, this work presents an effective strategy for advanced catalysts in energy-related applications.

6.
ACS Nano ; 18(22): 14496-14506, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38771969

ABSTRACT

Hydrogen obtained from electrochemical water splitting is the most promising clean energy carrier, which is hindered by the sluggish kinetics of the oxygen evolution reaction (OER). Thus, the development of an efficient OER electrocatalyst using nonprecious 3d transition elements is desirable. Multielement synergistic effect and lattice oxygen oxidation are two well-known mechanisms to enhance the OER activity of catalysts. The latter is generally related to the high valence state of 3d transition elements leading to structural destabilization under the OER condition. We have found that Al doping in nanosheet Ni-Fe hydroxide exhibits 2-fold advantage: (1) a strong enhanced OER activity from 277 mV to 238 mV at 10 mA cm-2 as the Ni valence state increases from Ni3.58+ to Ni3.79+ observed from in situ X-ray absorption spectra. (2) Operational stability is strengthened, while weakness is expected since the increased NiIV content with 3d8L2 (L denotes O 2p hole) would lead to structural instability. This contradiction is attributed to a reduced lattice oxygen contribution to the OER upon Al doping, as verified through in situ Raman spectroscopy, while the enhanced OER activity is interpreted as an enormous gain in exchange energy of FeIV-NiIV, facilitated by their intersite hopping. This study reveals a mechanism of Fe-Ni synergy effect to enhance OER activity and simultaneously to strengthen operational stability by suppressing the contribution of lattice oxygen.

7.
Chem Sci ; 15(11): 3928-3935, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38487225

ABSTRACT

Anion exchange membrane fuel cells are a potentially cost-effective energy conversion technology, however, the electrocatalyst for the anodic hydrogen oxidation reaction (HOR) suffers from sluggish kinetics under alkaline conditions. Herein, we report that Ru-based nanosheets with amorphous-crystalline heterointerfaces of Ru and Ti-doped RuO2 (a/c-Ru/Ti-RuO2) can serve as a highly efficient HOR catalyst with a mass activity of 4.16 A mgRu-1, which is 19.8-fold higher than that of commercial Pt/C. Detailed characterization studies show that abundant amorphous-crystalline heterointerfaces of a/c-Ru/Ti-RuO2 nanosheets provide oxygen vacancies and unsaturated coordination bonds for balancing adsorption of hydrogen and hydroxyl species on Ru active sites to elevate HOR activity. Moreover, Ti doping can facilitate CO oxidation, leading to enhanced strength to CO poisoning. This work provides a strategy for enhancing alkaline HOR performance over Ru-based catalysts with heteroatom and heterointerface dual-engineering, which will attract immediate interest in chemistry, materials science and beyond.

8.
Nat Commun ; 15(1): 1447, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365760

ABSTRACT

Exploring an active and cost-effective electrocatalyst alternative to carbon-supported platinum nanoparticles for alkaline hydrogen evolution reaction (HER) have remained elusive to date. Here, we report a catalyst based on platinum single atoms (SAs) doped into the hetero-interfaced Ru/RuO2 support (referred to as Pt-Ru/RuO2), which features a low HER overpotential, an excellent stability and a distinctly enhanced cost-based activity compared to commercial Pt/C and Ru/C in 1 M KOH. Advanced physico-chemical characterizations disclose that the sluggish water dissociation is accelerated by RuO2 while Pt SAs and the metallic Ru facilitate the subsequent H* combination. Theoretical calculations correlate with the experimental findings. Furthermore, Pt-Ru/RuO2 only requires 1.90 V to reach 1 A cm-2 and delivers a high price activity in the anion exchange membrane water electrolyzer, outperforming the benchmark Pt/C. This research offers a feasible guidance for developing the noble metal-based catalysts with high performance and low cost toward practical H2 production.

9.
ACS Nano ; 18(2): 1611-1620, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38166379

ABSTRACT

Single-atom catalysts, known for their high activity, have garnered significant interest. Currently, single-atom catalysts were prepared mainly on 2D substrates with random distribution. Here, we report a strategy for preparing arrayed single Pt (Pt1) atoms, which are templated through coordination with phosphotungstic acids (PTA) intercalated inside hexagonally packed silicate nanochannels for a high single Pt-atom loading of ca. 3.0 wt %. X-ray absorption spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, in conjunction with the density-functional theory calculation, collectively indicate that the Pt single atoms are stabilized via a four-oxygen coordination on the PTA within the nanochannels' inner walls. The critical reduction in the Pt-adsorption energy to nearly the cohesive energy of Pt clustering is attributed to the interaction between PTA and the silicate substrate. Consequently, the transition from single-atom dispersion to clustering of Pt atoms can be controlled by adjusting the number density of PTA intercalated within the silicate nanochannels, specifically when the number ratio of Pt atoms to PTA changes from 3.7 to 18. The 3D organized Pt1-PTA pairs, facilitated by the arrayed silicate nanochannels, demonstrate high and stable efficiency with a hydrogen production rate of ca. 300 mmol/h/gPt─approximately twice that of the best-reported Pt efficiency in polyoxometalate-based photocatalytic systems.

10.
Nat Commun ; 15(1): 472, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212300

ABSTRACT

Reversible proton ceramic electrochemical cells are promising solid-state ion devices for efficient power generation and energy storage, but necessitate effective air electrodes to accelerate the commercial application. Here, we construct a triple-conducting hybrid electrode through a stoichiometry tuning strategy, composed of a cubic phase Ba0.5Sr0.5Co0.8Fe0.2O3-δ and a hexagonal phase Ba4Sr4(Co0.8Fe0.2)4O16-δ. Unlike the common method of creating self-assembled hybrids by breaking through material tolerance limits, the strategy of adjusting the stoichiometric ratio of the A-site/B-site not only achieves strong interactions between hybrid phases, but also can efficiently modifies the phase contents. When operate as an air electrode for reversible proton ceramic electrochemical cell, the hybrid electrode with unique dual-phase synergy shows excellent electrochemical performance with a current density of 3.73 A cm-2 @ 1.3 V in electrolysis mode and a peak power density of 1.99 W cm-2 in fuel cell mode at 650 °C.

11.
Nano Lett ; 24(4): 1205-1213, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38214250

ABSTRACT

Amorphous nanomaterials have drawn extensive attention owing to their unique features, while amorphization on noble metal nanomaterials still remains formidably challenging. Herein, we demonstrate a universal strategy to synthesize amorphous Pd-based nanomaterials from unary to quinary metals through the introduction of phosphorus (P). The amorphous Pd-based nanoparticles (NPs) exhibit generally promoted oxygen reduction reaction (ORR) activity and durability compared with their crystalline counterparts. Significantly, the quinary P-PdCuNiInSn NPs, benefiting from the amorphous structure and multimetallic component effect, exhibit mass activities as high as 1.04 A mgPd-1 and negligible activity decays of 1.8% among the stability tests, which are much better than values for original Pd NPs (0.134 A mgPd-1 and 28.4%). Experimental and theoretical analyses collectively reveal that the synergy of P-induced amorphization and the expansion of metallic components can considerably lower the free energy changes in the rate-determined step, thereby explaining the positive correlation with the catalytic activity.

12.
Inorg Chem ; 63(5): 2431-2442, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38258796

ABSTRACT

The coupled NO-vibrational peaks [IR νNO 1775 s, 1716 vs, 1668 vs cm-1 (THF)] between two adjacent [Fe(NO)2] groups implicate the electron delocalization nature of the singly O-phenoxide-bridged dinuclear dinitrosyliron complex (DNIC) [Fe(NO)2(µ-ON2Me)Fe(NO)2] (1). Electronic interplay between [Fe(NO)2] units and [ON2Me]- ligand in DNIC 1 rationalizes that "hard" O-phenoxide moiety polarizes iron center(s) of [Fe(NO)2] unit(s) to enforce a "constrained" π-conjugation system acting as an electron reservoir to bestow the spin-frustrated {Fe(NO)2}9-{Fe(NO)2}9-[·ON2Me]2- electron configuration (Stotal = 1/2). This system plays a crucial role in facilitating the ligand-based redox interconversion, working in harmony to control the storage and redox-triggered transport of the [Fe(NO)2]10 unit, while preserving the {Fe(NO)2}9 core in DNICs {Fe(NO)2}9-[·ON2Me]2- [K-18-crown-6-ether)][(ON2Me)Fe(NO)2] (2) and {Fe(NO)2}9-[·ON2Me] [(ON2Me)Fe(NO)2][PF6] (3). Electrochemical studies suggest that the redox interconversion among [{Fe(NO)2}9-[·ON2Me]2-] DNIC 3 ↔ [{Fe(NO)2}9-[ON2Me]-] ↔ [{Fe(NO)2}9-[·ON2Me]] DNIC 2 are kinetically feasible, corroborated by the redox shuttle between O-bridged dimerized [(µ-ONMe)2Fe2(NO)4] (4) and [K-18-crown-6-ether)][(ONMe)Fe(NO)2] (5). In parallel with this finding, the electronic structures of [{Fe(NO)2}9-{Fe(NO)2}9-[·ON2Me]2-] DNIC 1, [{Fe(NO)2}9-[·ON2Me]2-] DNIC 2, [{Fe(NO)2}9-[·ON2Me]] DNIC 3, [{Fe(NO)2}9-[ONMe]-]2 DNIC 4, and [{Fe(NO)2}9-[·ONMe]2-] DNIC 5 are evidenced by EPR, SQUID, and Fe K-edge pre-edge analyses, respectively.

13.
Adv Mater ; 36(18): e2312140, 2024 May.
Article in English | MEDLINE | ID: mdl-38241656

ABSTRACT

Noble metals have been widely used in catalysis, however, the scarcity and high cost of noble metal motivate researchers to balance the atomic efficiency and atomic density, which is formidably challenging. This article proposes a robust strategy for fabricating 3D amorphous noble metal-based oxides with simultaneous enhancement on atomic efficiency and density with the assistance of atomic channels, where the atomic utilization increases from 18.2% to 59.4%. The unique properties of amorphous bimetallic oxides and formation of atomic channels have been evidenced by detailed experimental characterizations and theoretical simulations. Moreover, the universality of the current strategy is validated by other binary oxides. When Cu2IrOx with atomic channels (Cu2IrOx-AE) is used as catalyst for oxygen evolution reaction (OER), the mass activity and turnover frequency value of Cu2IrOx-AE are 1-2 orders of magnitude higher than CuO/IrO2 and Cu2IrOx without atomic channels, largely outperforming the reported OER catalysts. Theoretical calculations reveal that the formation of atomic channels leads to various Ir sites, on which the proton of adsorbed *OH can transfer to adjacent O atoms of [IrO6]. This work may attract immediate interest of researchers in material science, chemistry, catalysis, and beyond.

14.
Adv Mater ; 36(7): e2308839, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37906727

ABSTRACT

Highly selective semihydrogenation of alkynes to alkenes is a highly important reaction for catalytic industry. Developing non-noble metal based catalysts with platinum group metal-like activity and selectivity is extremely crucial yet challenging. Metastable phase catalysts provide a potential candidate to realize high activity, yet the control of selectivity remains an open question. Here, this work first reports a metastable phase core-shell: face-centered cubic (fcc) phase Ag (10 at%) core-metastable hexagonal closest packed (hcp) phase Ni (90 at%) shell catalyst, which represents high conversion rate, high selectivity, and remarkable universality for the semihydrogenation of phenylacetylene and its derivatives. More impressively, a turnover frequency (TOF) value of 8241.8 h-1 is achieved, much higher than those of stable phase catalysts and reported platinum group metal based catalysts. Mechanistic investigation reveals that the surface of hcp Ni becomes more oxidized due to electron transfer from hcp Ni shell to fcc Ag core, which decreases the adsorption capacity of styrene on the metastable phase Ni surface, thus preventing full hydrogenation. This work has gained crucial research significance for the design of high performance metastable phase catalysts.

15.
Inorg Chem ; 63(1): 784-794, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38153269

ABSTRACT

Nanosized zerovalent iron (NZVI) Fe@Fe3O4 with a core-shell structure derived from photocatalytic MeOH aqueous solution of dinitrosyl iron complex (DNIC) [(N3MDA)Fe(NO)2] (N3MDA = N,N-dimethyl-2-(((1-methyl-1H-imidazole-2-yl)methylene)amino)ethane-1-amine) (1-N3MDA), eosin Y, and triethylamine (TEA) is demonstrated. The NZVI Fe@Fe3O4 core shows a high percentage of zerovalent iron (Fe0 %) and is stabilized by a hydrophobic organic support formed through the photodegradation of eosin Y hybridized with the N3MDA ligand. In addition to its well-known reductive properties in wastewater treatment and groundwater remediation, NZVI demonstrates the ability to form heterostructures when it interacts with metal ions. In this research, Co2+ is employed as a model contaminant and reacted with NZVI Fe@Fe3O4 to result in the formation of a distinct Fe-Co heterostructure, cracked NZVI (CNZVI). The slight difference in the standard redox potentials between Fe2+ and Co2+, the magnetic properties of Co2+, and the absence of surface hydroxides of Fe@Fe3O4 enable NZVI to mildly reduce Co2+ and facilitate Co2+ penetration into the iron core. Taking advantage of the well-dispersed nature of CNZVI on an organic support, the reduction in particle size due to Co2+ penetration, and Fe-Co synergism, CNZVI is employed as a catalyst in the alkaline oxygen evolution reaction (OER). Remarkably, CNZVI exhibits a highly efficient OER performance, surpassing the benchmark IrO2 catalyst. These findings show the potential of using NZVI as a template for synthesizing highly efficient OER catalysts. Moreover, the study demonstrates the possibility of repurposing waste materials from water treatment as valuable resources for catalytic energy conversion, particularly in water oxidation processes.

16.
Small ; 20(22): e2310036, 2024 May.
Article in English | MEDLINE | ID: mdl-38126916

ABSTRACT

Strain effect in the structurally defective materials can contribute to the catalysis optimization. However, it is challenging to achieve the performance improvement by strain modulation with the help of geometrical structure because strain is spatially dependent. Here, a new class of compressively strained platinum-iridium-metal zigzag-like nanowires (PtIrM ZNWs, M = nickel (Ni), cobalt (Co), iron (Fe), zinc (Zn) and gallium (Ga)) is reported as the efficient alkaline hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) catalysts. Particularly, the optimized PtIrNi ZNWs with 3% compressive strain (cs-PtIrNi ZNWs) can achieve the highest HER/HOR performances among all the catalysts investigate. Their HOR mass and specific activities are 3.2/14.4 and 2.6/32.7 times larger than those of PtIrNi NWs and commercial Pt/C, respectively. Simultaneously, they can exhibit the superior stability and high CO resistance for HOR. Further, experimental and theoretical studies collectively reveal that the compressive strain in cs-PtIrNi ZNWs effectively weakens the adsorption of hydroxyl intermediate and modulates the electronic structure, resulting in the weakened hydrogen binding energy (HBE) and moderate hydroxide binding energy (OHBE), beneficial for the improvement of HOR performance. This work highlights the importance of strain tuning in enhancing Pt-based nanomaterials for hydrogen catalysis and beyond.

17.
Small ; : e2307910, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072788

ABSTRACT

To investigate synergistic effect between geometric and electronic structures on directing CO2 RR selectivity, water phase synthetic protocol and surface architecture engineering strategy are developed to construct monodispersed Bi-doped Cu-based nanocatalysts. The strongly correlated catalytic directionality and Bi3+ dopant can be rationalized by the regulation of [*COOH]/[*CO] adsorption capacities through the appropriate doping of Bi3+ electronic modulator, resulting in volcano relationship between FECO /TOFCO and surface EVBM values. Spectroscopic study reveals that the dual-site binding mode ([Cu─µâ”€C(═O)O─Bi3+ ]) enabled by Cu1 Bi3+ 2 motif in single-phase Cu150 Bi1 nanocatalyst drives CO2-to-CO conversion. In contrast, the study of dynamic Bi speciation and phase transformation in dual-phase Cu50 Bi1 nanocatalyst unveils that the Bi0 -Bi0 contribution emerges at the expense of BOC phase, suggesting metallic Bi0 phase acting as [H]˙ formation center switches CO2 RR selectivity toward CO2-to-HCOO- conversion via [*OCHO] and [*OCHOK] intermediates. This work provides significant insight into how geometric architecture cooperates with electronic effect and catalytic motif/phase to guide the selectivity of electrocatalytic CO2 reduction through the distinct surface-bound intermediates and presents molecular-level understanding of catalytic mechanism for CO/HCOO- formation.

18.
J Am Chem Soc ; 145(50): 27757-27766, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38059839

ABSTRACT

H2O2 photosynthesis has attracted great interest in harvesting and converting solar energy to chemical energy. Nevertheless, the high-efficiency process of H2O2 photosynthesis is driven by the low H2O2 productivity due to the recombination of photogenerated electron-hole pairs, especially in the absence of a sacrificial agent. In this work, we demonstrate that ultrathin ZnIn2S4 nanosheets with S vacancies (Sv-ZIS) can serve as highly efficient catalysts for H2O2 photosynthesis via O2/H2O redox. Mechanism studies confirm that Sv in ZIS can extend the lifetimes of photogenerated carriers and suppress their recombination, which triggers the O2 reduction and H2O oxidation to H2O2 through radical initiation. Theoretical calculations suggest that the formation of Sv can strongly change the coordination structure of ZIS, modulating the adsorption abilities to intermediates and avoiding the overoxidation of H2O to O2 during O2/H2O redox, synergistically promoting 2e- O2 reduction and 2e- H2O oxidation for ultrahigh H2O2 productivity. The optimal catalyst displays a H2O2 productivity of 1706.4 µmol g-1 h-1 under visible-light irradiation without a sacrificial agent, which is ∼29 times higher than that of pristine ZIS (59.4 µmol g-1 h-1) and even much higher than those of reported photocatalysts. Impressively, the apparent quantum efficiency is up to 9.9% at 420 nm, and the solar-to-chemical conversion efficiency reaches ∼0.81%, significantly higher than the value for natural synthetic plants (∼0.10%). This work provides a facile strategy to separate the photogenerated electron-hole pairs of ZIS for H2O2 photosynthesis, which may promote fundamental research on solar energy harvest and conversion.

19.
J Am Chem Soc ; 145(51): 28010-28021, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38095915

ABSTRACT

Phase regulation of noble metal-based nanomaterials provides a promising strategy for boosting the catalytic performance. However, realizing the continuous phase modulation in two-dimensional structures and unveiling the relevant structure-performance relationship remain significant challenges. In this work, we present the first example of continuous phase modulation in a library of Pd-Te hexagonal nanoplates (HNPs) from cubic-phase Pd4Te, rhombohedral-phase Pd20Te7, rhombohedral-phase Pd8Te3, and hexagonal-phase PdTe to hexagonal-phase PdTe2. Notably, the continuous phase regulation of the well-defined Pd-Te HNPs enables the successful modulation of the distance between adjacent Pd active sites, triggering an exciting way for tuning the relevant catalytic reactions intrinsically. The proof-of-concept oxygen reduction reaction (ORR) experiment shows a Pd-Pd distance-dependent ORR performance, where the hexagonal-phase PdTe HNPs present the best electrochemical performance in ORR (mass activity and specific activity of 1.02 A mg-1Pd and 1.83 mA cm-2Pd at 0.9 V vs RHE). Theoretical investigation reveals that the increased Pd-Pd distance relates to the weak *OH adsorption over Pd-Te HNPs, thus contributing to the remarkable ORR activity of PdTe HNPs. This work advances the phase-controlled synthesis of noble metal-based nanostructures, which gives huge impetus to the design of high-efficiency nanomaterials for diverse applications.

20.
Angew Chem Int Ed Engl ; 62(50): e202311304, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37872849

ABSTRACT

Herein, we have specifically designed two metalated porous organic polymers (Zn-POP and Co-POP) for syngas (CO+H2 ) production from gaseous CO2 . The variable H2 /CO ratio of syngas with the highest efficiency was produced in water medium (without an organic hole scavenger and photosensitizer) by utilizing the basic principle of Lewis acid/base chemistry. Also, we observed the formation of entirely different major products during photocatalytic CO2 reduction and water splitting with the help of the two catalysts, where CO (145.65 µmol g-1 h-1 ) and H2 (434.7 µmol g-1 h-1 ) production were preferentially obtained over Co-POP & Zn-POP, respectively. The higher electron density/better Lewis basic nature of Co-POP was investigated further using XPS, XANES, and NH3 -TPD studies, which considerably improve CO2 activation capacity. Moreover, the structure-activity relationship was confirmed via in situ DRIFTS and DFT studies, which demonstrated the formation of COOH* intermediate along with the thermodynamic feasibility of CO2 reduction over Co-POP while water splitting occurred preferentially over Zn-POP.

SELECTION OF CITATIONS
SEARCH DETAIL
...