Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Viruses ; 15(5)2023 05 11.
Article in English | MEDLINE | ID: mdl-37243238

ABSTRACT

The main objective of this study was to investigate the dynamic of SARS-CoV-2 viral excretion in rectal swab (RS), saliva, and nasopharyngeal swab (NS) samples from symptomatic patients and asymptomatic contacts. In addition, in order to evaluate the replication potential of SARS-CoV-2 in the gastrointestinal (GI) tract and the excretion of infectious SARS-CoV-2 from feces, we investigated the presence of subgenomic nucleoprotein gene (N) mRNA (sgN) in RS samples and cytopathic effects in Vero cell culture. A prospective cohort study was performed to collect samples from symptomatic patients and contacts in Rio de Janeiro, Brazil, from May to October 2020. One hundred and seventy-six patients had samples collected at home visits and/or during the follow up, resulting in a total of 1633 RS, saliva, or NS samples. SARS-CoV-2 RNA was detected in 130 (73.9%) patients who had at least one sample that tested positive for SARS-CoV-2. The presence of replicating SARS-CoV-2 in RS samples, measured by the detection of sgN mRNA, was successfully achieved in 19.4% (6/31) of samples, whilst infectious SARS-CoV-2, measured by the generation of cytopathic effects in cell culture, was identified in only one RS sample. Although rare, our results demonstrated the replication capacity of SARS-CoV-2 in the GI tract, and infectious viruses in one RS sample. There is still a gap in the knowledge regarding SARS-CoV-2 fecal-oral transmission. Additional studies are warranted to investigate fecal or wastewater exposure as a risk factor for transmission in human populations.


Subject(s)
COVID-19 , Communicable Diseases , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , RNA, Viral/genetics , Brazil/epidemiology , Prospective Studies
2.
Preprint in English | medRxiv | ID: ppmedrxiv-22280193

ABSTRACT

The SARS-CoV-2 variants of concern (VOCs) Delta and Omicron spread globally during mid and late 2021, respectively, with variable impact according to the immune population landscape. In this study, we compare the dissemination dynamics of these VOCs in the Amazonas state, one of Brazils most heavily affected regions. We sequenced the virus genome from 4,128 patients collected in Amazonas between July 1st, 2021 and January 31st, 2022 and investigated the lineage replacement dynamics using a phylodynamic approach. The VOCs Delta and Omicron displayed similar patterns of phylogeographic spread but significantly different epidemic dynamics. The Delta and Omicron epidemics were fueled by multiple introduction events, followed by the successful establishment of a few local transmission lineages of considerable size that mainly arose in the Capital, Manaus. The VOC Omicron spread and became dominant much faster than the VOC Delta. We estimate that under the same epidemiological conditions, the average Re of Omicron was [~]3.3 times higher than that of Delta and the average Re of the Delta was [~]1.3 times higher than that of Gamma. Furthermore, the gradual replacement of Gamma by Delta occurred without an upsurge of COVID-19 cases, while the rise of Omicron fueled a sharp increase in SARS-CoV-2 infection. The Omicron wave displayed a shorter duration and a clear decoupling between the number of SARS-CoV-2 cases and deaths compared with previous (B.1.* and Gamma) waves in the Amazonas state. These findings suggest that the high level of hybrid immunity (infection plus vaccination) acquired by the Amazonian population by mid-2021 was able to limit the spread of the VOC Delta and was also probably crucial to curb the number of severe cases, although not the number of VOC Omicron new infections.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22269379

ABSTRACT

In the present study, serum samples of 20 hospitalized COVID-19 patients from Brazil who were infected by the earlier SARS-CoV-2 lineages B.1.1.28 and B.1.1.33, and by the variant of concern (VOC) Gamma (P.1) were tested by plaque reduction neutralization test (PRNT90) with wild isolates of a panel of SARS-CoV-2 lineages, including B.1, Zeta, N.10, and the VOCs Gamma, Alpha, and Delta that emerged in different timeframes of the pandemic. The main objectives of the present study were to evaluate if serum of COVID-19 patients infected by earlier lineages of SARS-CoV-2 were capable to neutralize recently emerged VOCs, and if PRNT90 is a reliable serologic method to distinguish infections caused by different SARS-CoV-2 lineages. Overall, sera collected from the day of admittance to the hospital to 21 days after diagnostic of patients infected by the two earlier lineages B.1.1.28 and B.1.1.33 presented neutralizing capacity for all challenged VOCs, including Gamma and Delta, that were the most prevalent VOCs in Brazil. Among all variants tested, Delta and N.10 presented the lowest mean of neutralizing antibody titers, and B.1.1.7, presented the highest titers. Four patients infected with Gamma, that emerged in December 2020, presented neutralizing antibodies for B.1, B.1.1.33 and B.1.1.28, its ancestor lineage. All of them had neutralizing antibodies under the level of detection for the VOC Delta. Interestingly, patients infected by B.1.1.28 presented very similar mean of neutralizing antibody titers for both B.1.1.33 and B.1.1.28. Findings presented here indicate that most patients infected in early stages of COVID-19 pandemic presented neutralizing antibodies up to 21 days after diagnostic capable to neutralize wild types of all recently emerged VOCs in Brazil, and that the PRNT90 it is not a reliable serologic method to distinguish natural infections caused by different SARS-CoV-2 lineages.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-471045

ABSTRACT

On the 24th November 2021 the sequence of a new SARS CoV-2 viral isolate spreading rapidly in Southern Africa was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titres of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic as well as Alpha, Beta, Gamma, Delta are substantially reduced or fail to neutralize. Titres against Omicron are boosted by third vaccine doses and are high in cases both vaccinated and infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of a large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses, combining mutations conferring tight binding to ACE2 to unleash evolution driven by immune escape, leading to a large number of mutations in the ACE2 binding site which rebalance receptor affinity to that of early pandemic viruses.

5.
Mem Inst Oswaldo Cruz ; 116: e210166, 2021.
Article in English | MEDLINE | ID: mdl-34755818

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.33-derived lineage named N.9 was described recently in Brazil and it's considered a potential variant of interest (VOI) due to the presence of E484K substitution at the receptor-binding domain (RBD) of the Spike (S) protein. OBJECTIVE: To describe the first detection of variant N.9 in Rio de Janeiro State. METHODS: SARS-CoV-2 N.9 was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), whole-genome sequencing and phylogenetic analysis. FINDINGS: Here, we report two SARS-CoV-2 N.9 lineage strains in Rio de Janeiro. One of them had only the E484K substitution of the six N.9 lineage-defining mutations. Other three strains pre-defined as N.9 have the same genomic profile. These four strains are grouped within the B.1.1.33 lineage and basal to the N.9 lineage in our phylogenetic analysis, and we call them "N.9-like/B.1.1.33 + E484K". MAIN CONCLUSIONS: The phylogenetic analysis shows four independent introductions of N.9 in the state of Rio de Janeiro in October and December 2020, January and March 2021. SARS-CoV-2 N.9 dissemination in the Rio de Janeiro could have been limited by the emergence and dominance of other variants, mainly by the lineage P.2 VOI Zeta that emerged in the same period and co-circulated with N.9, as observed in the neighboring State of São Paulo.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil , Humans , Mutation , Phylogeny
6.
Preprint in English | medRxiv | ID: ppmedrxiv-21266109

ABSTRACT

The rapid spread of the SARS-CoV-2 Variant of Concern (VOC) Gamma during late 2020 and early 2021 in Brazilian settings with high seroprevalence raised some concern about the potential role of reinfections in driving the epidemic. Very few cases of reinfection associated with the VOC Gamma, however, have been reported. Here we describe 25 cases of SARS-CoV-2 reinfection confirmed by real-time RT-PCR twice within months apart in Brazil. SARS-CoV-2 genomic analysis confirmed that individuals were primo-infected between March and December 2020 with distinct viral lineages, including B.1.1, B.1.1.28, B.1.1.33, B.1.195 and P.2, and then reinfected with the VOC Gamma between 3 to 12 months after primo-infection. The overall mean cycle threshold (Ct) value of the first (25.7) and second (24.5) episodes were roughly similar for the whole group and 14 individuals displayed mean Ct values < 25.0 at reinfection. Sera of 14 patients tested by plaque reduction neutralization test after reinfection displayed detectable neutralizing antibodies against Gamma and other SARS-CoV-2 variants (B.1.33, B.1.1.28 and Delta). All individuals have milder or no symptoms after reinfection and none required hospitalization. The present study demonstrates that the VOC Gamma was associated with reinfections during the second Brazilian epidemic wave in 2021 and raised concern about the potential infectiousness of reinfected subjects. Although individuals here analyzed failed to mount a long-term sterilizing immunity, they developed a high anti-Gamma neutralizing antibody response after reinfection that may provide some protection against severe disease.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-21266251

ABSTRACT

The SARS-CoV-2 Variant of Concern (VOC) Delta was first detected in India in October 2020. The first imported cases of the Delta variant in Brazil were identified in April 2021 in the Southern region, followed by more cases in different country regions during the following months. By early September 2021, Delta was already the dominant variant in the Southeastern (87%), Southern (73%), and Northeastern (52%) Brazilian regions. This work aimed to understand the spatiotemporal dissemination dynamics of Delta in Brazil. To this end, we employed a combination of Maximum Likelihood (ML) and Bayesian methods to reconstruct the evolutionary relationship of 2,264 of VOC Delta complete genomes (482 from this study) recovered across 21 out of 27 Brazilian federal units. Our phylogeographic analyses identified three major transmission clusters of Delta in Brazil. The clade BR-I (n = 1,560) arose in Rio de Janeiro in late April 2021 and was the major cluster behind the dissemination of the VOC Delta in the Southeastern, Northeastern, Northern, and Central-Western regions. The clade BR-II (n = 207) arose in the Parana state in late April 2021 and aggregated the largest fraction of sampled genomes from the Southern region. Lastly, the clade BR-III emerged in the Sao Paulo state in early June 2021 and remained mostly restricted to this state. In the rapid turnover of viral variants characteristic of the SARS-CoV-2 pandemic, Brazilian regions seem to occupy different stages of an increasing prevalence of the VOC Delta in their epidemic profiles. This process demands continuous genomic and epidemiological surveillance toward identifying and mitigating new introductions, limiting their dissemination, and preventing the establishment of more significant outbreaks in a population already heavily affected by the COVID-19 pandemic.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-21265116

ABSTRACT

The COVID-19 epidemic in Brazil experienced two major country-wide lineage replacements, the first driven by the lineage P.2, formerly classified as variant of interest (VOI) Zeta in late 2020 and the second by the variant of concern (VOC) Gamma in early 2021. To better understand how these SARS-CoV-2 lineage turnovers occurred in Brazil, we analyzed 11,724 high-quality SARS-CoV-2 whole genomes of samples collected in different country regions between September 2020 and April 2021. Our findings indicate that the spatial dispersion of both variants in Brazil was driven by short and long-distance viral transmission. The lineage P.2 harboring Spike mutation E484K probably emerged around late July 2020 in the Rio de Janeiro (RJ) state, which contributed with most ([~]50%) inter-state viral disseminations, and only became locally established in most Brazilian states by October 2020. The VOC Gamma probably arose in November 2020 in the Amazonas (AM) state, which was responsible for 60-70% of the inter-state viral dissemination, and the earliest timing of community transmission of this VOC in many Brazilian states was already traced to December 2020. We estimate that variant Gamma was 1.56-3.06 more transmissible than variant P.2 co-circulating in RJ and that the median effective reproductive number (Re) of Gamma in RJ and SP states (Re = 1.59-1.91) was lower than in AM (Re = 3.55). In summary, although the epicenter of the lineage P.2 dissemination in Brazil was the heavily interconnected Southeastern region, it displayed a slower rate of spatial spread than the VOC Gamma originated in the more isolated Northern Brazilian region. Our findings also support that the VOC Gamma was more transmissible than lineage P.2, although the viral Re of the VOC varied according to the geographic context.

9.
Preprint in English | medRxiv | ID: ppmedrxiv-21263755

ABSTRACT

The SARS-CoV-2 has infected almost 200 million people worldwide by July 2021 and the pandemic has been characterized by infection waves of viral lineages showing distinct fitness profiles. The simultaneous infection of a single individual by two distinct SARS-CoV-2 lineages provides a window of opportunity for viral recombination and the emergence of new lineages with differential phenotype. Several hundred SARS-CoV-2 lineages are currently well characterized but two main factors have precluded major coinfection/codetection analysis thus far: i) the low diversity of SARS-CoV-2 lineages during the first year of the pandemic which limited the identification of lineage defining mutations necessary to distinguish coinfecting viral lineages; and the ii) limited availability of raw sequencing data where abundance and distribution of intrasample/intrahost variability can be accessed. Here, we have put together a large sequencing dataset from Brazilian samples covering a period of 18 May 2020 to 30 April 2021 and probed it for unexpected patterns of high intrasample/intrahost variability. It enabled us to detect nine cases of SARS-CoV-2 coinfection with well characterized lineage-defining mutations. In addition, we matched these SARS-CoV-2 coinfections with spatio-temporal epidemiological data confirming their plausibility with the co-circulating lineages at the timeframe investigated. These coinfections represent around 0.61% of all samples investigated. Although our data suggests that coinfection with distinct SARS-CoV-2 lineages is a rare phenomenon, it is likely an underestimation and coinfection rates warrants further investigation. DATA SUMMARYThe raw fastq data of codetection cases are deposited on gisaid.org and correlated to gisaid codes: EPI_ISL_1068258, EPI_ISL_2491769, EPI_ISL_2491781, EPI_ISL_2645599, EPI_ISL_2661789, EPI_ISL_2661931, EPI_ISL_2677092, EPI_ISL_2777552, EPI_ISL_3869215. Supplementary data are available on https://doi.org/10.6084/m9.figshare.16570602.v1. The workflow code used in this study is publicly available on: https://github.com/dezordi/IAM_SARSCOV2.

10.
Preprint in English | medRxiv | ID: ppmedrxiv-21263453

ABSTRACT

The Amazonas was one of the most heavily affected Brazilian states by the COVID-19 epidemic. Despite a large number of infected people, particularly during the second wave associated with the spread of the Variant of Concern (VOC) Gamma (lineage P.1), SARS-CoV-2 continues to circulate in the Amazonas. To understand how SARS-CoV-2 persisted in a human population with a high immunity barrier, we generated 1,188 SARS-CoV-2 whole-genome sequences from individuals diagnosed in the Amazonas state from 1st January to 6th July 2021, of which 38 were vaccine breakthrough infections. Our study reveals a sharp increase in the relative prevalence of Gamma plus (P.1+) variants, designated as Pango Lineages P.1.3 to P.1.6, harboring two types of additional Spike changes: deletions in the N-terminal (NTD) domain (particularly{Delta} 144 or{Delta} 141-144) associated with resistance to anti-NTD neutralizing antibodies or mutations at the S1/S2 junction (N679K or P681H) that probably enhance the binding affinity to the furin cleavage site, as suggested by our molecular dynamics simulations. As lineages P.1.4 (S:N679K) and P.1.6 (S:P681H) expanded (Re > 1) from March to July 2021, the lineage P.1 declined (Re < 1) and the median Ct value of SARS-CoV-2 positive cases in Amazonas significantly decreases. Still, we found no overrepresentation of P.1+ variants among breakthrough cases of fully vaccinated patients (71%) in comparison to unvaccinated individuals (93%). This evidence supports that the ongoing endemic transmission of SARS-CoV-2 in the Amazonas is driven by the spread of new local Gamma/P.1 sub-lineages that are more transmissible, although not more efficient to evade vaccine-elicited immunity than the parental VOC. Finally, as SARS-CoV-2 continues to spread in human populations with a declining density of susceptible hosts, the risk of selecting new variants with higher infectivity are expected to increase.

11.
Preprint in English | medRxiv | ID: ppmedrxiv-21255111

ABSTRACT

First in Manaus in the Brazilian Northern region, the Variant of Concern P.1 traveled 3800 kilometers southeast to endanger Sao Paulo contributing to the collapse of the health system. Here, we show evidence of how fast the VOC P.1 has spread in the most populated city in South America.

12.
Preprint in English | medRxiv | ID: ppmedrxiv-21254839

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for coronavirus disease 19 (COVID-19), is a single-stranded positive-sense ribonucleic acid (RNA) virus that typically undergoes one to two single nucleotide mutations per month. COVID-19 continues to spread globally, with case fatality and test positivity rates often linked to locally circulating strains of SARS-CoV-2. Furthermore, mutations in this virus, in particular those occurring in the spike protein (involved in the virus binding to the host epithelial cells) have potential implications in current vaccination efforts. In Rwanda, more than twenty thousand cases have been confirmed as of March 14th 2021, with a case fatality rate of 1.4% and test positivity rate of 2.3% while the recovery rate is at 91.9%. Rwanda started its genomic surveillance efforts, taking advantage of pre-existing research projects and partnerships, to ensure early detection of SARS-CoV-2 variants and to potentially contain the spread of variants of concern (VOC). As a result of this initiative, we here present 203 SARS-CoV-2 whole genome sequences analyzed from strains circulating in the country from May 2020 to February 2021. In particular, we report a shift in variant distribution towards the newly emerging sub-lineage A.23.1 that is currently dominating. Furthermore, we report the detection of the first Rwandan cases of the VOCs, B.1.1.7 and B.1.351, among incoming travelers tested at Kigali International Airport. We also discuss the potential impact of COVID-19 control measures established in the country to control the spread of the virus. To assess the importance of viral introductions from neighboring countries and local transmission, we exploit available individual travel history metadata to inform spatio-temporal phylogeographic inference, enabling us to take into account infections from unsampled locations during the time frame of interest. We uncover an important role of neighboring countries in seeding introductions into Rwanda, including those from which no genomic sequences are currently available or that no longer report positive cases. Our results point to the importance of systematically screening all incoming travelers, regardless of the origin of their travels, as well as regional collaborations for durable response to COVID-19.

14.
Preprint in English | medRxiv | ID: ppmedrxiv-21253946

ABSTRACT

Mutations at both the receptor-binding domain (RBD) and the amino (N)-terminal domain (NTD) of the SARS-CoV-2 Spike (S) glycoprotein can alter its antigenicity and promote immune escape. We identified that SARS-CoV-2 lineages circulating in Brazil with mutations of concern in the RBD independently acquired convergent deletions and insertions in the NTD of the S protein, which altered the NTD antigenic-supersite and other predicted epitopes at this region. These findings support that the ongoing widespread transmission of SARS-CoV-2 in Brazil is generating new viral lineages that might be more resistant to neutralization than parental variants of concern.

15.
Preprint in English | bioRxiv | ID: ppbiorxiv-435194

ABSTRACT

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations: P.1 from Brazil, B.1.351 from South Africa and B.1.1.7 from the UK (12, 10 and 9 changes in the spike respectively). All have mutations in the ACE2 binding site with P.1 and B.1.351 having a virtually identical triplet: E484K, K417N/T and N501Y, which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine induced antibody responses than B.1.351 suggesting that changes outside the RBD impact neutralisation. Monoclonal antibody 222 neutralises all three variants despite interacting with two of the ACE2 binding site mutations, we explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.

16.
Preprint in English | medRxiv | ID: ppmedrxiv-20249026

ABSTRACT

BackgroundUruguay is one of the few countries in the Americas that successfully contained the COVID-19 epidemic during the first half of 2020. Nevertheless, the intensive human mobility across the dry border with Brazil is a major challenge for public health authorities. We aimed to investigate the origin of SARS-CoV-2 strains detected in Uruguayan localities bordering Brazil as well as to measure the viral flux across this [~]1,100 km uninterrupted dry frontier. MethodsUsing complete SARS-CoV-2 genomes from the Uruguayan-Brazilian bordering region and phylogeographic analyses, we inferred the virus dissemination frequency between Brazil and Uruguay and characterized local outbreak dynamics during the first months (May-July) of the pandemic. FindingsPhylogenetic analyses revealed multiple introductions of SARS-CoV-2 Brazilian lineages B.1.1.28 and B.1.1.33 into Uruguayan localities at the bordering region. The most probable sources of viral strains introduced to Uruguay were the Southeast Brazilian region and the state of Rio Grande do Sul. Some of the viral strains introduced in Uruguayan border localities between early May and mid-July were able to locally spread and originated the first outbreaks detected outside the metropolitan region. The viral lineages responsible for Uruguayan suburban outbreaks were defined by a set of between four and 11 mutations (synonymous and non-synonymous) respect to the ancestral B.1.1.28 and B.1.1.33 viruses that arose in Brazil, supporting the notion of a rapid genetic differentiation between SARS-CoV-2 subpopulations spreading in South America. InterpretationAlthough Uruguayan borders have remained essentially closed to non-Uruguayan citizens, the inevitable flow of people across the dry border with Brazil allowed the repeated entry of the virus into Uruguay and the subsequent emergence of local outbreaks in Uruguayan border localities. Implementation of coordinated bi-national surveillance systems are crucial to achieve an efficient control of the SARS-CoV-2 spread across this kind of highly permeable borderland regions around the world. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSSince the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative agent of coronavirus disease 19 (COVID-19), was first detected in South America on February 26, 2020, it has rapidly spread through the region, causing nearly 350,000 deaths by December, 2020. In contrast to most American countries, Uruguay avoided an early exponential growth of SARS-CoV-2 cases and during the first six months of the pandemic it registered the lowest incidence of SARS-CoV-2 cases and deaths among South American countries. The intensive cross-border human mobility through the [~]1,100 km uninterrupted dry frontier between Uruguay and Brazil, might poses a major challenge for long-term control of the epidemic in Uruguay. Previous genomic studies conducted in Uruguay have analyzed sequences mostly sampled at the capital city, Montevideo, and detected prevalent SARS-CoV-2 lineages different from those described in Brazil, thus finding no evidence of frequent viral exchanges between these countries. Added value of this studyHere we present the first genomic study of SARS-CoV-2 strains detected in different Uruguayan and Brazilian localities along the bordering region. The samples analyzed include 30% (n = 59) of all laboratory confirmed SARS-CoV-2 cases from Uruguayan departments at the Brazilian border between March and July, 2020, as well as 68 SARS-CoV-2 sequences from individuals diagnosed in the southernmost Brazilian state of Rio Grande do Sul between March and August, 2020. We demonstrate that SARS-CoV-2 viral lineages that widely spread in the Southeastern Brazilian region (B.1.1.28 and B.1.1.33) were also responsible for most viral infections in Rio Grande do Sul and neighboring Uruguayan localities. We further uncover that major outbreaks detected in Uruguayan localities bordering Brazil in May and June, 2020, were originated from two independent introduction events of the Brazilian SARS-CoV-2 lineage B.1.1.33, unlike previous outbreaks in the Uruguayan metropolitan region that were seeded by European SARS-CoV-2 lineages. Implications of all the available evidenceOur findings confirm that although Uruguayan borders have remained essentially closed to non-Uruguayan citizens, dissemination of SARS-CoV-2 across the Uruguayan-Brazilian frontier was not fully suppressed and had the potential to ignite local transmission chains in Uruguay. These findings also highlight the relevance of implementing bi-national public health cooperation workforces combining epidemiologic and genomic data to monitor the viral spread throughout this kind of highly permeable dry frontiers around the world.

17.
Mem. Inst. Oswaldo Cruz ; 116: e210166, 2021. graf
Article in English | LILACS | ID: biblio-1346580

ABSTRACT

BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.33-derived lineage named N.9 was described recently in Brazil and it's considered a potential variant of interest (VOI) due to the presence of E484K substitution at the receptor-binding domain (RBD) of the Spike (S) protein. OBJECTIVE To describe the first detection of variant N.9 in Rio de Janeiro State. METHODS SARS-CoV-2 N.9 was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), whole-genome sequencing and phylogenetic analysis. FINDINGS Here, we report two SARS-CoV-2 N.9 lineage strains in Rio de Janeiro. One of them had only the E484K substitution of the six N.9 lineage-defining mutations. Other three strains pre-defined as N.9 have the same genomic profile. These four strains are grouped within the B.1.1.33 lineage and basal to the N.9 lineage in our phylogenetic analysis, and we call them "N.9-like/B.1.1.33 + E484K". MAIN CONCLUSIONS The phylogenetic analysis shows four independent introductions of N.9 in the state of Rio de Janeiro in October and December 2020, January and March 2021. SARS-CoV-2 N.9 dissemination in the Rio de Janeiro could have been limited by the emergence and dominance of other variants, mainly by the lineage P.2 VOI Zeta that emerged in the same period and co-circulated with N.9, as observed in the neighboring State of São Paulo.


Subject(s)
Humans , SARS-CoV-2 , COVID-19 , Phylogeny , Brazil , Mutation
18.
Preprint in English | bioRxiv | ID: ppbiorxiv-158006

ABSTRACT

Despite all efforts to control the COVID-19 spread, the SARS-CoV-2 reached South America within three months after its first detection in China, and Brazil became one of the hotspots of COVID-19 in the world. Several SARS-CoV-2 lineages have been identified and some local clusters have been described in this early pandemic phase in Western countries. Here we investigated the genetic diversity of SARS-CoV-2 during the early phase (late February to late April) of the epidemic in Brazil. Phylogenetic analyses revealed multiple introductions of SARS-CoV-2 in Brazil and the community transmission of a major B.1.1 lineage defined by two amino acid substitutions in the Nucleocapsid and ORF6. This SARS-CoV-2 Brazilian lineage was probably established during February 2020 and rapidly spread through the country, reaching different Brazilian regions by the middle of March 2020. Our study also supports occasional exportations of this Brazilian B.1.1 lineage to neighboring South American countries and to more distant countries before the implementation of international air travels restrictions in Brazil.

19.
Preprint in English | bioRxiv | ID: ppbiorxiv-069039

ABSTRACT

Genomic surveillance has become a useful tool for better understanding virus pathogenicity, origin and spread. Obtaining accurately assembled, complete viral genomes directly from clinical samples is still a challenging. Here, we describe three protocols using a unique primer set designed to recover long reads of SARS-CoV-2 directly from total RNA extracted from clinical samples. This protocol is useful, accessible and adaptable to laboratories with varying resources and access to distinct sequencing methods: Nanopore, Illumina and/or Sanger.

20.
Rio de Janeiro; s.n; 2015. xviii,176 p. ilus, tab.
Thesis in Portuguese | LILACS | ID: lil-774202

ABSTRACT

A primeira detecção do vírus Influenza A (H1N1)pdm09 no Brasil aconteceu em maio de2009, e foi seguida de uma extensa disseminação por toda a população brasileira, com grandeimpacto em morbidade e mortalidade. Para entender a dinâmica molecular do Influenza A(H1N1)pdm09 no país, a presente tese reuniu sete trabalhos que abordaram a análise filogenéticadeste agente viral durante e após o período pandêmico (2009 a 2014) e buscou indentificarpolimorfismos virais associados à virulência e à resistência ao antiviral Oseltamivir (OST). Para isso,as metodologias realizadas foram o sequenciamento dos genes de hemaglutinina (HA) eneuraminidase (NA) utilizando a metodologia de Sanger e a metodologia de pirosequenciamento paradetectar polimorfismos de base única (SNPs).Nossos resultados revelaram a circulação de nove grupos filogenéticos ao longo dos cincoanos do estudo, indicando uma substituição temporal dos grupos e ocasionalmente umaestratificação geográfica. No entanto, nenhum dos grupos filogenéticos identificados foramassociados com um pior prognóstico da infecção por influenza. Ao contrário do que foi observado emestudos anteriores, as mutações K-15E e Q310H no gene HA não se associaram ao aumento devirulência, mesmo na infecção de indivíduos imunocomprometidos. Por outro lado, polimorfismos noresíduo 222 da HA, que caracterizaram a presença de quasispecies virais, mostraram uma forteassociação com a gravidade da infecção, especialmente em gestantes. Nesta tese, tambémrealizamos a vigilância de marcadores de resistência no gene NA. Entre as amostras analisadasencontramos sete vírus com a mutação H275Y e dois com S247N, esses marcadores estãorelacionados com a diminuição de sensibilidade ao antiviral OST. Entre as amostras resistentes, agrande maioria foi detectada na região Sul do Brasil, em pacientes que não receberam OST. Istosugere uma possível transmissão sustentada do vírus resistentes no país...


The Influenza A (H1N1)pdm09 virus was first detected in May 2009 in Brazil and later resultedin an extensive spread throughout the Brazilian population with a severe impact on morbidity andmortality. To understand the molecular dynamic of (H1N1)pdm09 virus in Brazil this thesis groupedseven papers which approached the phylogenetic reconstruction of the virus during and after thepandemic period (2009 to 2014) and the genomic identification of viral polymorphisms associated withvirulence or antiviral resistance to Oseltamivir (OST). For this, we performed genome sequencing,focusing especially on the hemagglutinin (HA) and neuraminidase (NA) genes using conventionalSanger sequencing and PyroMark 96ID to detect single nucleotide polymorphisms (SNPs).Our results showed that in Brazil nine (H1N1)pdm09 phylogenetic groups circulated along thefive years of the study, indicating a temporal replacement of groups and ocasionally a geographicstratification. However, no phylogenetic group seemed to be associated with a worse clinical outcome.The increased virulence observed in previous studies with a 2009 group bearing the genetic markersK-15E and Q310H was not confirmed in our analyses, even evaluating an immunocompromisedpopulation. On the other hand, polymorphysms at position 222 of HA gene, which characterized thepresence of viral quasispecies, showed an association with increased virulence in brazilian samples,especially in pregnant women. In this study we also performed surveillance of resistance markers atthe NA gene. From the analysed samples we found seven viruses with H275Y and two with S247Nmutation, that diminish the sensibility to oseltamivir (OST). Among the resistant samples, the largemajority was detected in the Southern region of Brazil in patients that did not receive OST. Thissuggests a possible sustained transmission of resistant virus in the country...


Subject(s)
Humans , Influenza, Human , Pandemics , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/growth & development , Influenza in Birds
SELECTION OF CITATIONS
SEARCH DETAIL
...