Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Open Biol ; 11(6): 210028, 2021 06.
Article in English | MEDLINE | ID: mdl-34129783

ABSTRACT

Rhodnius prolixus is the principal vector of Trypanosoma cruzi, the aetiological agent of Chagas disease in American countries. This insect is haematophagous during all life cycles and, to antagonize its haemostatic, inflammatory and immune systems, it secretes saliva while feeding on the vertebrate host's blood. Here, we investigated characteristic changes of the salivary glands (SG) that occur during insect development. Two pairs of lobules and ducts comprise the SG of R. prolixus. The organ's size increases over time, but the microanatomical structures are preserved during insect development. Both lobules have a single layer epithelium formed by binucleated cells, which surrounds the saliva reservoir. The principal lobule presents higher polysaccharide and total protein contents than the accessory lobe. A network of external muscle layers is responsible for organ contraction and saliva release. Apocrine, merocrine and holocrine secretion types occur in the secretory epithelium. Dopamine, serotonin and tyrosine-hydroxylase are neural-related molecules that regulate SG function both during and after feeding.


Subject(s)
Rhodnius/metabolism , Rhodnius/ultrastructure , Salivary Glands/metabolism , Salivary Glands/ultrastructure , Animals , Chagas Disease/parasitology , Chagas Disease/transmission , Fluorescent Antibody Technique , Immunohistochemistry , Insect Vectors , Microscopy, Electron , Rhodnius/anatomy & histology , Rhodnius/parasitology , Salivary Glands/cytology , Trypanosoma cruzi
2.
J Vector Ecol ; 37(2): 351-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23181859

ABSTRACT

Anopheles darlingi is an important vector of human malaria in the Amazon. Adult females of this mosquito species require a blood meal to develop eggs, preferring humans to other blood sources. Although gonotrophic concordance has been described as the norm for An. darlingi, here we report An. darlingi female mosquitoes taking two or more blood meals within their first gonotrophic cycle. Only half of field-captured adult females fed one blood meal developed follicles to Christophers' stage V. This outcome is dependent on larval nutrition, as 88% of laboratory-raised well-nourished females completed the first gonotrophic cycle with only one blood meal, while less nourished females needed additional blood meals. Half of the field-captured blood-seeking An. darlingi females had follicles in intermediate (IIIa and IIIb) and final (V) stages of the gonotrophic cycle, supporting the conclusion that An. darlingi blood feed more than once during a gonotrophic cycle. Additionally, we observed females attempting to blood feed a second time during the same day. Additional studies of An. darlingi biting behavior are necessary to accurately estimate Plasmodium sp. entomologic inoculation rates throughout the An. darlingi vast geographical distribution.


Subject(s)
Anopheles/physiology , Feeding Behavior/physiology , Animals , Blood , Female , Insect Vectors/physiology
3.
Parasit Vectors ; 4: 1, 2011 Jan 04.
Article in English | MEDLINE | ID: mdl-21205315

ABSTRACT

BACKGROUND: Aedes aegypti mosquitoes are the main vectors of dengue viruses to humans. Understanding their biology and interactions with the pathogen are prerequisites for development of dengue transmission control strategies. Mosquito salivary glands are organs involved directly in pathogen transmission to vertebrate hosts. Information on the spatial distribution of gene expression in these organs is expected to assist in the development of novel disease control strategies, including those that entail the release of transgenic mosquitoes with impaired vector competence. RESULTS: We report here the hybridization in situ patterns of 30 transcripts expressed in the salivary glands of adult Ae. aegypti females. Distinct spatial accumulation patterns were identified. The products of twelve genes are localized exclusively in the proximal-lateral lobes. Among these, three accumulate preferentially in the most anterior portion of the proximal-lateral lobe. This pattern revealed a salivary gland cell type previously undescribed in Ae. aegypti, which was validated by transmission electron microscopy. Five distinct gene products accumulate in the distal-lateral lobes and another five localize in the medial lobe. Seven transcripts are found in the distal-lateral and medial lobes. The transcriptional product of one gene accumulates in proximal- and distal-lateral lobes. Seven genes analyzed by quantitative PCR are expressed constitutively. The most abundant salivary gland transcripts are those localized within the proximal-lateral lobes, while previous work has shown that the distal-lateral lobes are the most active in protein synthesis. This incongruity suggests a role for translational regulation in mosquito saliva production. CONCLUSIONS: Transgenic mosquitoes with reduced vector competence have been proposed as tools for the control of dengue virus transmission. Expression of anti-dengue effector molecules in the distal-lateral lobes of Ae. aegypti salivary glands has been shown to reduce prevalence and mean intensities of viral infection. We anticipate greater efficiency of viral suppression if effector genes are expressed in all lobes of the salivary glands. Based on our data, a minimum of two promoters is necessary to drive the expression of one or more anti-dengue genes in all cells of the female salivary glands.


Subject(s)
Aedes/genetics , Gene Expression Profiling , Aedes/metabolism , Animals , Female , In Situ Hybridization, Fluorescence , Polymerase Chain Reaction , Salivary Glands/metabolism
4.
Toxicon ; 57(1): 19-27, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20950639

ABSTRACT

Phoneutria (Ctenidae) is among the most dangerous venomous spiders in Brazil. Its venom is composed of a mixture of pharmacologically active components, some of which have been quite extensively studied due to their potentiality as models for new pharmaceutical drugs. Nevertheless, literature data on the venom-producing glands are very limited. In the present study, we follow the biological development of intra-cocoon stages of Phoneutria nigriventer spiders, mainly regarding the formation of the venomous apparatus and venom production. The results showed that the venom glands of Phoneutria are already present in the early 1st pre-larva stage. The venomous apparatus is completely formed in the larva, a stage that precedes the spider eclosion from the cocoon. At embryo stages, transcripts of a vertebrate-active neurotoxin (PhTx1) were shown to be present, as well as, unidentified venom proteins that were immunolabeled by anti-venom antibodies. It seems that venom toxins play roles in the protection and survival of those early developmental stages of Phoneutria spiders.


Subject(s)
Embryo, Nonmammalian/embryology , Embryonic Development/physiology , Spider Venoms/metabolism , Spiders/embryology , Animals , Embryo, Nonmammalian/physiology , Embryo, Nonmammalian/ultrastructure , Exocrine Glands/embryology , Exocrine Glands/metabolism , Female , Gene Expression , Larva/growth & development , Neuropeptides/genetics , Neuropeptides/metabolism , Oligonucleotide Array Sequence Analysis , RNA, Messenger/metabolism , Spiders/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...