Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(24): e2321344121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830107

ABSTRACT

The estrogen receptor-α (ER) is thought to function only as a homodimer but responds to a variety of environmental, metazoan, and therapeutic estrogens at subsaturating doses, supporting binding mixtures of ligands as well as dimers that are only partially occupied. Here, we present a series of flexible ER ligands that bind to receptor dimers with individual ligand poses favoring distinct receptor conformations-receptor conformational heterodimers-mimicking the binding of two different ligands. Molecular dynamics simulations showed that the pairs of different ligand poses changed the correlated motion across the dimer interface to generate asymmetric communication between the dimer interface, the ligands, and the surface binding sites for epigenetic regulatory proteins. By examining the binding of the same ligand in crystal structures of ER in the agonist vs. antagonist conformers, we also showed that these allosteric signals are bidirectional. The receptor conformer can drive different ligand binding modes to support agonist vs. antagonist activity profiles, a revision of ligand binding theory that has focused on unidirectional signaling from the ligand to the coregulator binding site. We also observed differences in the allosteric signals between ligand and coregulator binding sites in the monomeric vs. dimeric receptor, and when bound by two different ligands, states that are physiologically relevant. Thus, ER conformational heterodimers integrate two different ligand-regulated activity profiles, representing different modes for ligand-dependent regulation of ER activity.


Subject(s)
Estrogen Receptor alpha , Estrogens , Molecular Dynamics Simulation , Protein Multimerization , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/chemistry , Allosteric Regulation , Humans , Ligands , Estrogens/metabolism , Estrogens/chemistry , Binding Sites , Protein Binding , Protein Conformation
2.
bioRxiv ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38645081

ABSTRACT

The estrogen receptor-α (ER) is thought to function only as a homodimer, but responds to a variety of environmental, metazoan, and therapeutic estrogens at sub-saturating doses, supporting binding mixtures of ligands as well as dimers that are only partially occupied. Here, we present a series of flexible ER ligands that bind to receptor dimers with individual ligand poses favoring distinct receptor conformations -receptor conformational heterodimers-mimicking the binding of two different ligands. Molecular dynamics simulations showed that the pairs of different ligand poses changed the correlated motion across the dimer interface to generate asymmetric communication between the dimer interface, the ligands, and the surface binding sites for epigenetic regulatory proteins. By examining binding of the same ligand in crystal structures of ER in the agonist versus antagonist conformers, we also showed that these allosteric signals are bidirectional. The receptor conformer can drive different ligand binding modes to support agonist versus antagonist activity profiles, a revision of ligand binding theory that has focused on unidirectional signaling from ligand to the coregulator binding site. We also observed differences in the allosteric signals between ligand and coregulator binding sites in the monomeric versus dimeric receptor, and when bound by two different ligands, states that are physiologically relevant. Thus, ER conformational heterodimers integrate two different ligand-regulated activity profiles, representing new modes for ligand-dependent regulation of ER activity. Significance: The estrogen receptor-α (ER) regulates transcription in response to a hormonal milieu that includes low levels of estradiol, a variety of environmental estrogens, as well as ER antagonists such as breast cancer anti-hormonal therapies. While ER has been studied as a homodimer, the variety of ligand and receptor concentrations in different tissues means that the receptor can be occupied with two different ligands, with only one ligand in the dimer, or as a monomer. Here, we use X-ray crystallography and molecular dynamics simulations to reveal a new mode for ligand regulation of ER activity whereby sequence-identical homodimers can act as functional or conformational heterodimers having unique signaling characteristics, with ligand-selective allostery operating across the dimer interface integrating two different signaling outcomes.

3.
Neurol Int ; 16(2): 289-298, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38525700

ABSTRACT

Due to the occlusion of the anterior choroidal artery (AChA), ischemic strokes are described with the classic clinical triad, namely hemiplegia, hemianesthesia, and homonymous hemianopsia. The aim of this study is to document the characteristic clinical presentation and course of AChA infract cases. We describe five cases with acute infarction in the distribution of the AChA, admitted to the Neurological Department of the University General Hospital of Larissa. Results: All cases presented with hemiparesis and lower facial nerve palsy, while four of them had dysarthria, and two patients exhibited ataxia. Two cases underwent intravenous thrombolysis. A notable feature was the worsening of the clinical course, specifically the exacerbation of upper limb weakness within 48 h. Stabilization occurred after the third day, with the final development of a more severe clinical presentation than the initial one. Additionally, muscle weakness was more severe in the upper limb than in the lower limb. The recovery of upper limb function was poor in the three-month follow-up for the four cases. While vascular brain episodes are characterized by sudden onset, in AChA infraction, the clinical onset can be gradually developed over a few days, with a greater burden on the upper limb and poorer recovery.

4.
Res Sq ; 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37546719

ABSTRACT

Oligomerization of proteins and their modified forms (proteoforms) produces functional protein complexes 1,2. Complexoforms are complexes that consist of the same set of proteins with different proteoforms 3. The ability to characterize these assemblies within cells is critical to understanding the molecular mechanisms involved in disease and to designing effective drugs. An outstanding biological question is how proteoforms drive function and oligomerization of complexoforms. However, tools to define endogenous proteoform-proteoform/ligand interactions are scarce 4. Here, we present a native top-down proteomics (nTDP) strategy that combines size-exclusion chromatography, nano liquid-chromatography in direct infusion mode, field asymmetric ion mobility spectrometry, and multistage mass spectrometry to identify protein assemblies (≤70 kDa) in breast cancer cells and in cells that overexpress EGFR, a resistance model of estrogen receptor-α (ER-α) targeted therapies. By identifying ~104 complexoforms from 17 protein complexes, our nTDP approach revealed several molecular features of the breast cancer proteome, including EGFR-induced dissociation of nuclear transport factor 2 (NUTF2) assemblies that modulate ER activity. Our findings show that the K4 and K55 posttranslational modification sites discovered with nTDP differentially impact the effects of NUTF2 on the inhibition of the ER signaling pathway. By characterizing endogenous proteoform-proteoform/ligand interactions, we reveal the molecular diversity of complexoforms, which allows us to propose a model for ER drug discovery in the context of designing effective inhibitors to selectively bind and disrupt the actions of targeted ER complexoforms.

SELECTION OF CITATIONS
SEARCH DETAIL
...