Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 11(1): 41, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36915128

ABSTRACT

The hepatocyte growth factor (HGF)/MET signaling pathway has been proposed to be involved in the resistance to radiotherapy of glioblastoma via proinvasive and DNA damage response pathways.Here we assessed the role of the MET pathway in the response to radiotherapy in vitro and in vivo in syngeneic mouse glioma models. We find that the murine glioma cell lines GL-261, SMA-497, SMA-540 and SMA-560 express HGF and its receptor MET and respond to exogenous HGF with MET phosphorylation. Glioma cell viability or proliferation are unaffected by genetic or pharmacological MET inhibition using tepotinib or CRISPR/Cas9-engineered Met gene knockout and MET inhibition fails to sensitize glioma cells to irradiation in vitro. In contrast, the combination of tepotinib with radiotherapy prolongs survival of orthotopic SMA-560 or GL-261 glioma-bearing mice compared with radiotherapy or tepotinib treatment alone. Synergy is lost when such experiments are conducted in immunodeficient Rag1-/- mice, and, importantly, also when Met gene expression is disrupted in the tumor cells. Combination therapy suppresses a set of pro-inflammatory mediators including matrix metalloproteases that are upregulated by radiotherapy alone and that have been linked to poor outcome in glioblastoma. Several of these mediators are positively regulated by transforming growth factor (TGF)-ß, and pSMAD2 levels as a surrogate marker of TGF-ß pathway activity are suppressed by combination treatment. We conclude that synergistic suppression of experimental syngeneic glioma growth by irradiation and MET inhibition requires MET expression in the tumor as well as an intact immune system. Clinical evaluation of this combined strategy in newly diagnosed glioblastoma is warranted.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Mice , Animals , Glioblastoma/genetics , Cell Line, Tumor , Glioma/pathology , Signal Transduction , Phosphorylation , Brain Neoplasms/metabolism
2.
Cell Death Dis ; 8(12): 3210, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29238047

ABSTRACT

Multiple target inhibition has gained considerable interest in combating drug resistance in glioblastoma, however, understanding the molecular mechanisms of crosstalk between signaling pathways and predicting responses of cancer cells to targeted interventions has remained challenging. Despite the significant role attributed to transforming growth factor (TGF)-ß family and hepatocyte growth factor (HGF)/c-MET signaling in glioblastoma pathogenesis, their functional interactions have not been well characterized. Using genetic and pharmacological approaches to stimulate or antagonize the TGF-ß pathway in human glioma-initiating cells (GIC), we observed that TGF-ß exerts an inhibitory effect on c-MET phosphorylation. Inhibition of either mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) or phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway attenuated this effect. A comparison of c-MET-driven and c-MET independent GIC models revealed that TGF-ß inhibits stemness in GIC at least in part via its negative regulation of c-MET activity, suggesting that stem cell (SC) maintenance may be controlled by the balance between these two oncogenic pathways. Importantly, immunohistochemical analyses of human glioblastoma and ex vivo single-cell gene expression profiling of TGF-ß and HGF confirm the negative interaction between both pathways. These novel insights into the crosstalk of two major pathogenic pathways in glioblastoma may explain some of the disappointing results when targeting either pathway alone in human glioblastoma patients and inform on potential future designs on targeted pharmacological or genetic intervention.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Hepatocyte Growth Factor/pharmacology , Neoplastic Stem Cells/drug effects , Proto-Oncogene Proteins c-met/genetics , Transforming Growth Factor beta/pharmacology , Butadienes/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Humans , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Neoplastic Stem Cells/pathology , Nitriles/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Pteridines/pharmacology , Pyrazoles/pharmacology , Pyridazines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Quinolines/pharmacology , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta , Signal Transduction , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
3.
EMBO Mol Med ; 8(1): 6-24, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26612856

ABSTRACT

Cerebral cavernous malformations (CCMs) are vascular malformations located within the central nervous system often resulting in cerebral hemorrhage. Pharmacological treatment is needed, since current therapy is limited to neurosurgery. Familial CCM is caused by loss-of-function mutations in any of Ccm1, Ccm2, and Ccm3 genes. CCM cavernomas are lined by endothelial cells (ECs) undergoing endothelial-to-mesenchymal transition (EndMT). This switch in phenotype is due to the activation of the transforming growth factor beta/bone morphogenetic protein (TGFß/BMP) signaling. However, the mechanism linking Ccm gene inactivation and TGFß/BMP-dependent EndMT remains undefined. Here, we report that Ccm1 ablation leads to the activation of a MEKK3-MEK5-ERK5-MEF2 signaling axis that induces a strong increase in Kruppel-like factor 4 (KLF4) in ECs in vivo. KLF4 transcriptional activity is responsible for the EndMT occurring in CCM1-null ECs. KLF4 promotes TGFß/BMP signaling through the production of BMP6. Importantly, in endothelial-specific Ccm1 and Klf4 double knockout mice, we observe a strong reduction in the development of CCM and mouse mortality. Our data unveil KLF4 as a therapeutic target for CCM.


Subject(s)
Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/pathology , Kruppel-Like Transcription Factors/metabolism , Animals , Bone Morphogenetic Protein 6/antagonists & inhibitors , Bone Morphogenetic Protein 6/genetics , Bone Morphogenetic Protein 6/metabolism , Cell Proliferation , Disease Models, Animal , Disease Progression , Endothelial Cells/cytology , Endothelial Cells/metabolism , HEK293 Cells , Hemangioma, Cavernous, Central Nervous System/metabolism , Humans , KRIT1 Protein , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/antagonists & inhibitors , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/antagonists & inhibitors , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , Mutation , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA Interference , Signal Transduction , Smad1 Protein/metabolism , Transforming Growth Factor beta/metabolism
4.
PLoS One ; 8(8): e70233, 2013.
Article in English | MEDLINE | ID: mdl-23940549

ABSTRACT

Reproducing the characteristics and the functional responses of the blood-brain barrier (BBB) in vitro represents an important task for the research community, and would be a critical biotechnological breakthrough. Pharmaceutical and biotechnology industries provide strong demand for inexpensive and easy-to-handle in vitro BBB models to screen novel drug candidates. Recently, it was shown that canonical Wnt signaling is responsible for the induction of the BBB properties in the neonatal brain microvasculature in vivo. In the present study, following on from earlier observations, we have developed a novel model of the BBB in vitro that may be suitable for large scale screening assays. This model is based on immortalized endothelial cell lines derived from murine and human brain, with no need for co-culture with astrocytes. To maintain the BBB endothelial cell properties, the cell lines are cultured in the presence of Wnt3a or drugs that stabilize ß-catenin, or they are infected with a transcriptionally active form of ß-catenin. Upon these treatments, the cell lines maintain expression of BBB-specific markers, which results in elevated transendothelial electrical resistance and reduced cell permeability. Importantly, these properties are retained for several passages in culture, and they can be reproduced and maintained in different laboratories over time. We conclude that the brain-derived endothelial cell lines that we have investigated gain their specialized characteristics upon activation of the canonical Wnt pathway. This model may be thus suitable to test the BBB permeability to chemicals or large molecular weight proteins, transmigration of inflammatory cells, treatments with cytokines, and genetic manipulation.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/cytology , Brain/metabolism , Endothelial Cells/metabolism , Wnt Proteins/metabolism , Animals , Mice , Microscopy, Fluorescence , Reverse Transcriptase Polymerase Chain Reaction , beta Catenin/metabolism
5.
Nature ; 498(7455): 492-6, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23748444

ABSTRACT

Cerebral cavernous malformation (CCM) is a vascular dysplasia, mainly localized within the brain and affecting up to 0.5% of the human population. CCM lesions are formed by enlarged and irregular blood vessels that often result in cerebral haemorrhages. CCM is caused by loss-of-function mutations in one of three genes, namely CCM1 (also known as KRIT1), CCM2 (OSM) and CCM3 (PDCD10), and occurs in both sporadic and familial forms. Recent studies have investigated the cause of vascular dysplasia and fragility in CCM, but the in vivo functions of this ternary complex remain unclear. Postnatal deletion of any of the three Ccm genes in mouse endothelium results in a severe phenotype, characterized by multiple brain vascular malformations that are markedly similar to human CCM lesions. Endothelial-to-mesenchymal transition (EndMT) has been described in different pathologies, and it is defined as the acquisition of mesenchymal- and stem-cell-like characteristics by the endothelium. Here we show that endothelial-specific disruption of the Ccm1 gene in mice induces EndMT, which contributes to the development of vascular malformations. EndMT in CCM1-ablated endothelial cells is mediated by the upregulation of endogenous BMP6 that, in turn, activates the transforming growth factor-ß (TGF-ß) and bone morphogenetic protein (BMP) signalling pathway. Inhibitors of the TGF-ß and BMP pathway prevent EndMT both in vitro and in vivo and reduce the number and size of vascular lesions in CCM1-deficient mice. Thus, increased TGF-ß and BMP signalling, and the consequent EndMT of CCM1-null endothelial cells, are crucial events in the onset and progression of CCM disease. These studies offer novel therapeutic opportunities for this severe, and so far incurable, pathology.


Subject(s)
Disease Progression , Epithelial-Mesenchymal Transition , Hemangioma, Cavernous, Central Nervous System/pathology , Animals , Bone Morphogenetic Protein 6/antagonists & inhibitors , Bone Morphogenetic Protein 6/metabolism , Bone Morphogenetic Protein 6/pharmacology , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Hemangioma, Cavernous, Central Nervous System/genetics , Humans , KRIT1 Protein , Mice , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...