Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Ecol ; 89(2): 323-333, 2020 02.
Article in English | MEDLINE | ID: mdl-31671206

ABSTRACT

The hypothesis that biotic interactions are stronger at lower relative to higher latitudes has a rich history, drawing from ecological and evolutionary theory. While this hypothesis suggests that stronger interactions at lower latitudes may contribute to the maintenance of contemporary patterns of diversity, there remain few standardized biogeographic comparisons of community effects of species interactions. Using marine seagrasses as a focal ecosystem of conservation importance and sessile marine invertebrates as model prey, we tested the hypothesis that predation is stronger at lower latitudes and can shape contemporary patterns of prey diversity. To further advance understanding beyond prior studies, we also explored mechanisms that likely underlie a change in interaction outcomes with latitude. Multiple observational and experimental approaches were employed to test for effects of predators, and the mechanisms that may underlie these effects, in seagrass ecosystems of the western Atlantic Ocean spanning 30° of latitude from the temperate zone to the tropics. In predator exclusion experiments conducted in a temperate and a tropical region, predation decreased sessile invertebrate abundance, richness and diversity on both natural and standardized artificial seagrass at tropical but not temperate sites. Further, predation reduced invertebrate richness at both local and regional scales in the tropics. Additional experiments demonstrated that predation reduced invertebrate recruitment in the tropics but not the temperate zone. Finally, direct observations of predators showed higher but variable consumption rates on invertebrates at tropical relative to temperate latitudes. Together, these results demonstrate that strong predation in the tropics can have consequential impacts on prey communities through discrete effects on early life stages as well as longer-term cumulative effects on community structure and diversity. Our detailed experiments also provide some of the first data linking large-scale biogeographic patterns, community-scale interaction outcomes and direct observation of predators in the temperate zone and tropics. Therefore, our results support the hypothesis that predation is stronger in the tropics, but also elucidate some of the causes and consequences of this variation in shaping contemporary patterns of diversity.


Subject(s)
Ecosystem , Invertebrates , Animals , Aquatic Organisms , Atlantic Ocean , Predatory Behavior
2.
PLoS One ; 14(9): e0221969, 2019.
Article in English | MEDLINE | ID: mdl-31490995

ABSTRACT

Invasive predators have caused rapid declines in many native prey species across the globe. Predator invasion success may be attributed to prey naïveté, or the absence of anti-predator behavior between native and non-native species. An understanding of the effects of naïveté at different timescales since introduction and across multiple trophic levels is lacking, however, particularly in marine systems. Given the central role of trophic interactions in invasion dynamics, this knowledge gap limits the ability to predict high impact predator invasions. Naïveté was examined across three trophic levels of marine invertebrates: a native basal prey (hard clam), two non-native intermediate predators (the recently-introduced Asian shore crab and the long-established European green crab), a native intermediate predator (juvenile blue crabs), and a native top predator (adult blue crab). We hypothesized that naïveté would be more pronounced in trophic interactions involving the recently-introduced non-native predator in comparison to the long-established non-native and native intermediate predators. We further hypothesized that the recently-introduced intermediate predator would both benefit from naïveté of the native basal prey and be hindered by higher mortality through its own naïveté to the native top predator. To test these hypotheses, three laboratory experiments and a field experiment were used. Consistent with our hypotheses, basal prey naïveté was most pronounced with the recently-introduced intermediate predator, and this increased the predator's foraging success. This recently-introduced intermediate predator, however, exhibited an ineffective anti-predator response to the native top predator, and was also preyed upon more in the field than its long-established and native counterparts. Therefore, despite direct benefits from basal prey naïveté, the recently-introduced intermediate predator's naïveté to its own predators may limit its invasion success. These results highlight the importance of a multi-trophic perspective on predator-prey dynamics to more fully understand the consequences of naïveté in invasion biology.


Subject(s)
Aquatic Organisms , Food Chain , Introduced Species , Predatory Behavior , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...