Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(24)2023 12 09.
Article in English | MEDLINE | ID: mdl-38132128

ABSTRACT

Abatacept (CTLA4-Ig)-a monoclonal antibody which restricts T cell activation-is an effective treatment for rheumatoid arthritis (RA). Nevertheless, only 50% of RA patients attain clinical responses, while predictors of response are rather limited. Herein, we aimed to investigate for early biomarkers of response to abatacept, based on a detailed immunological profiling of peripheral blood (PB) cells and serum proteins. We applied flow cytometry and proteomics analysis on PB immune cells and serum respectively, of RA patients starting abatacept as the first biologic agent. After 6 months of treatment, 34.5% of patients attained response. At baseline, Th1 and FoxP3+ T cell populations were positively correlated with tender joint counts (p-value = 0.047 and p-value = 0.022, respectively). Upon treatment, CTLA4-Ig effectively reduced the percentages of Th1 and Th17 only in responders (p-value = 0.0277 and p-value = 0.0042, respectively). Notably, baseline levels of Th1 and myeloid cell populations were significantly increased in PB of responders compared to non-responders (p-value = 0.009 and p-value = 0.03, respectively). Proteomics analysis revealed that several inflammatory mediators were present in serum of responders before therapy initiation and strikingly 10 amongst 303 serum proteins were associated with clinical responses. Finally, a composite index based on selected baseline cellular and proteomics' analysis could predict response to abatacept with a high sensitivity (90%) and specificity (88.24%).


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Humans , Abatacept/pharmacology , Abatacept/therapeutic use , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Inflammation Mediators , Myeloid Cells
2.
J Immunol ; 209(10): 1906-1917, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36426957

ABSTRACT

Rheumatoid arthritis (RA) is characterized by autoimmune joint destruction with debilitating consequences. Despite treatment advancements with biologic therapies, a significant proportion of RA patients show an inadequate clinical response, and restoration of immune self-tolerance represents an unmet therapeutic need. We have previously described a tolerogenic phenotype of plasmacytoid dendritic cells (pDCs) in RA patients responding to anti-TNF-α agents. However, the molecular mechanisms involved in tolerogenic reprogramming of pDCs in RA remain elusive. In this study, guided by transcriptomic analysis of CD303+CD123+ pDCs from RA patients in remission, we revealed enhanced expression of IL-6R and its downstream signaling compared with healthy pDCs. Functional assessment demonstrated that IL-6R engagement resulted in marked reduction of TNF-α secretion by pDCs whereas intracellular TNF-α was significantly increased. Accordingly, pharmacologic inhibition of IL-6R signaling restored TNF-α secretion levels by pDCs. Mechanistic analysis demonstrated impaired activity and decreased lysosomal degradation of ADAM17 (a disintegrin and metalloproteinase 17) sheddase in pDCs, which is essential for TNF-α cleavage. Importantly, reduction of TNF-α secretion by IL-6-treated pDCs attenuated the inflammatory potential of RA patient-derived synovial fibroblasts. Collectively, these findings position pDCs as an important source of TNF-α in RA pathogenesis and unravel an anti-inflammatory mechanism of IL-6 by limiting the pDC-derived TNF-α secretion.


Subject(s)
Arthritis, Rheumatoid , Interleukin-6 , Humans , Tumor Necrosis Factor Inhibitors , Dendritic Cells , Signal Transduction , Tumor Necrosis Factor-alpha
3.
Arthritis Res Ther ; 24(1): 206, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008868

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease for which prediction of long-term prognosis from disease's outset is not clinically feasible. The importance of immunoglobulin G (IgG) and its Fc N-glycosylation in inflammation is well-known and studies described its relevance for several autoimmune diseases, including RA. Herein we assessed the association between IgG N-glycoforms and disease prognosis at 2 years in an early inflammatory arthritis cohort. METHODS: Sera from 118 patients with early inflammatory arthritis naïve to treatment sampled at baseline were used to obtain IgG Fc glycopeptides, which were then analyzed in a subclass-specific manner by liquid chromatography coupled to mass spectrometry (LC-MS). Patients were prospectively followed and a favorable prognosis at 2 years was assessed by a combined index as remission or low disease activity (DAS28 < 3.2) and normal functionality (HAQ ≤ 0.25) while on treatment with conventional synthetic DMARDs and never used biologic DMARDs. RESULTS: We observed a significant association between high levels of IgG2/3 Fc galactosylation (effect 0.627 and adjusted p value 0.036 for the fully galactosylated glycoform H5N4F1; effect -0.551 and adjusted p value 0.04963 for the agalactosylated H3N4F1) and favorable outcome after 2 years of treatment. The inclusion of IgG glycoprofiling in a multivariate analysis to predict the outcome (with HAQ, DAS28, RF, and ACPA included in the model) did not improve the prognostic performance of the model. CONCLUSION: Pending confirmation of these findings in larger cohorts, IgG glycosylation levels could be used as a prognostic marker in early arthritis, to overcome the limitations of the current prognostic tools.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/drug therapy , Glycosylation , Humans , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G
4.
JCI Insight ; 6(21)2021 11 08.
Article in English | MEDLINE | ID: mdl-34554930

ABSTRACT

IL-33, a nuclear alarmin released during cell death, exerts context-specific effects on adaptive and innate immune cells, eliciting potent inflammatory responses. We screened blood, skin, and kidney tissues from patients with systemic lupus erythematosus (SLE), a systemic autoimmune disease driven by unabated type I IFN production, and found increased amounts of extracellular IL-33 complexed with neutrophil extracellular traps (NETs), correlating with severe, active disease. Using a combination of molecular, imaging, and proteomic approaches, we show that SLE neutrophils, activated by disease immunocomplexes, release IL-33-decorated NETs that stimulate robust IFN-α synthesis by plasmacytoid DCs in a manner dependent on the IL-33 receptor ST2L. IL33-silenced neutrophil-like cells cultured under lupus-inducing conditions generated NETs with diminished interferogenic effect. Importantly, NETs derived from patients with SLE are enriched in mature bioactive isoforms of IL-33 processed by the neutrophil proteases elastase and cathepsin G. Pharmacological inhibition of these proteases neutralized IL-33-dependent IFN-α production elicited by NETs. We believe these data demonstrate a novel role for cleaved IL-33 alarmin decorating NETs in human SLE, linking neutrophil activation, type I IFN production, and end-organ inflammation, with skin pathology mirroring that observed in the kidneys.


Subject(s)
Dendritic Cells/metabolism , Extracellular Traps/immunology , Interferon-alpha/immunology , Interleukin-33/metabolism , Lupus Erythematosus, Systemic/immunology , Case-Control Studies , Humans
5.
Eur J Immunol ; 46(11): 2542-2554, 2016 11.
Article in English | MEDLINE | ID: mdl-27585946

ABSTRACT

Aberrant formation of neutrophil extracellular traps (NETs) is a key feature in rheumatoid arthritis (RA) and plays a pivotal role in disease pathogenesis. However, the mechanism through which NETs shape the autoimmune response in RA remains elusive. In this study, we demonstrate that inhibition of peptidylarginine deiminases activity in collagen-induced arthritis (CIA) mouse model significantly reduces NET formation, attenuates clinical disease activity, and prevents joint destruction. Importantly, peptidylarginine deiminase 4 blocking markedly reduces the frequency of collagen-specific IFN-γ-producing T helper 1 (Th1) cells in the draining lymph nodes of immunized mice. Exposure of dendritic cells (DCs) to CIA-derived NETs induces DC maturation characterized by significant upregulation of costimulatory molecules, as well as elevated secretion of IL-6. Moreover, CIA-NET-treated DCs promote the induction of antigen-specific Th1 cells in vitro. Finally, NETs from RA patients show an increased potential to induce the maturation of DCs from healthy individuals, corroborating the findings obtained in CIA mouse model. Collectively, our findings delineate an important role of NETs in the induction and expansion of Th1 pathogenic cells in CIA through maturation of DCs and reveal a novel role of NETs in shaping the RA-autoimmune response that could be exploited therapeutically.


Subject(s)
Arthritis, Rheumatoid/immunology , Autoimmunity , Cell Differentiation/immunology , Dendritic Cells/immunology , Extracellular Traps/immunology , Th1 Cells/immunology , Animals , Arthritis, Experimental/immunology , Arthritis, Rheumatoid/physiopathology , Collagen/administration & dosage , Collagen/immunology , Dendritic Cells/metabolism , Disease Models, Animal , Extracellular Traps/drug effects , Humans , Hydrolases/metabolism , Interferon-gamma/metabolism , Interleukin-6/metabolism , Mice , Mice, Inbred DBA , Ornithine/administration & dosage , Ornithine/analogs & derivatives , Protein-Arginine Deiminase Type 4
6.
Arthritis Rheumatol ; 68(2): 449-61, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26414650

ABSTRACT

OBJECTIVE: Emerging evidence supports a crucial role of myeloid-derived suppressor cells (MDSCs) in the regulation of autoimmune diseases. However, their role in systemic lupus erythematosus (SLE) remains unknown. This study sought to address the role of MDSCs in the pathogenesis of SLE. METHODS: MDSCs from (NZB × NZW)F1 lupus-prone mice were assessed for phenotype by flow cytometry, and the function of MDSCs was analyzed by in vitro T cell proliferation assay and real-time quantitative polymerase chain reaction. Extracellular trap (ET) formation was evaluated by immunofluorescence and confocal microscopy. The production of reactive oxygen species (ROS) by Ly-6G+ cells was determined by fluorescence-activated cell sorting analysis. RESULTS: Expansion of MDSCs was impaired and the function of MDSCs was defective in the lymphoid organs of (NZB × NZW)F1 lupus-prone mice with established disease, in which involvement of predominantly the granulocytic MDSC (G-MDSC) cell subset was observed. More specifically, the results showed that increased elimination of G-MDSCs, driven by the inflammatory milieu of lupus, could be attributed to ET formation, and that cytokines, such as interferon-α (IFNα), IFNγ, and interleukin-6, play a role in this process. Induction of ET release by G-MDSCs was mediated by the production of ROS, since inhibition of ROS generation significantly reduced ET release. CONCLUSION: Collectively, the results of this study reveal that elimination of a crucial regulatory immune cell subset is a feature of the SLE microenvironment. These findings provide new insights into the pathogenetic mechanisms of the disease.


Subject(s)
Cytokines/immunology , Extracellular Traps/immunology , Granulocyte Precursor Cells/immunology , Lupus Erythematosus, Systemic/immunology , Reactive Oxygen Species/immunology , T-Lymphocytes/immunology , Animals , Antigens, Ly/immunology , Cell Proliferation , Disease Models, Animal , Disease Susceptibility , Female , Flow Cytometry , Fluorescent Antibody Technique , In Vitro Techniques , Interferon-alpha/immunology , Interferon-gamma/immunology , Interleukin-6/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NZB , Microscopy, Confocal , Myeloid Cells/immunology , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...