Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Infect ; 85(5): 557-564, 2022 11.
Article in English | MEDLINE | ID: mdl-36058413

ABSTRACT

OBJECTIVES: To describe the risk factors for SARS-CoV-2 infection in UK healthcare workers (HCWs). METHODS: We conducted a prospective sero-epidemiological study of HCWs at a major UK teaching hospital using a SARS-CoV-2 immunoassay. Risk factors for seropositivity were analysed using multivariate logistic regression. RESULTS: 410/5,698 (7·2%) staff tested positive for SARS-CoV-2 antibodies. Seroprevalence was higher in those working in designated COVID-19 areas compared with other areas (9·47% versus 6·16%) Healthcare assistants (aOR 2·06 [95%CI 1·14-3·71]; p=0·016) and domestic and portering staff (aOR 3·45 [95% CI 1·07-11·42]; p=0·039) had significantly higher seroprevalence than other staff groups after adjusting for age, sex, ethnicity and COVID-19 working location. Staff working in acute medicine and medical sub-specialities were also at higher risk (aOR 2·07 [95% CI 1·31-3·25]; p<0·002). Staff from Black, Asian and minority ethnic (BAME) backgrounds had an aOR of 1·65 (95% CI 1·32 - 2·07; p<0·001) compared to white staff; this increased risk was independent of COVID-19 area working. The only symptoms significantly associated with seropositivity in a multivariable model were loss of sense of taste or smell, fever, and myalgia; 31% of staff testing positive reported no prior symptoms. CONCLUSIONS: Risk of SARS-CoV-2 infection amongst HCWs is highly heterogeneous and influenced by COVID-19 working location, role, age and ethnicity. Increased risk amongst BAME staff cannot be accounted for solely by occupational factors.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , Health Personnel , Hospitals, Teaching , Humans , Prospective Studies , Risk Factors , Seroepidemiologic Studies , United Kingdom/epidemiology
2.
iScience ; 25(3): 103971, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35224470

ABSTRACT

Clotting Factor V (FV) is primarily synthesized in the liver and when cleaved by thrombin forms pro-coagulant Factor Va (FVa). Using whole blood RNAseq and scRNAseq of peripheral blood mononuclear cells, we find that FV mRNA is expressed in leukocytes, and identify neutrophils, monocytes, and T regulatory cells as sources of increased FV in hospitalized patients with COVID-19. Proteomic analysis confirms increased FV in circulating neutrophils in severe COVID-19, and immunofluorescence microscopy identifies FV in lung-infiltrating leukocytes in COVID-19 lung disease. Increased leukocyte FV expression in severe disease correlates with T-cell lymphopenia. Both plasma-derived and a cleavage resistant recombinant FV, but not thrombin cleaved FVa, suppress T-cell proliferation in vitro. Anticoagulants that reduce FV conversion to FVa, including heparin, may have the unintended consequence of suppressing the adaptive immune system.

3.
Blood ; 136(17): 1956-1967, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32693407

ABSTRACT

Gray platelet syndrome (GPS) is a rare recessive disorder caused by biallelic variants in NBEAL2 and characterized by bleeding symptoms, the absence of platelet α-granules, splenomegaly, and bone marrow (BM) fibrosis. Due to the rarity of GPS, it has been difficult to fully understand the pathogenic processes that lead to these clinical sequelae. To discern the spectrum of pathologic features, we performed a detailed clinical genotypic and phenotypic study of 47 patients with GPS and identified 32 new etiologic variants in NBEAL2. The GPS patient cohort exhibited known phenotypes, including macrothrombocytopenia, BM fibrosis, megakaryocyte emperipolesis of neutrophils, splenomegaly, and elevated serum vitamin B12 levels. Novel clinical phenotypes were also observed, including reduced leukocyte counts and increased presence of autoimmune disease and positive autoantibodies. There were widespread differences in the transcriptome and proteome of GPS platelets, neutrophils, monocytes, and CD4 lymphocytes. Proteins less abundant in these cells were enriched for constituents of granules, supporting a role for Nbeal2 in the function of these organelles across a wide range of blood cells. Proteomic analysis of GPS plasma showed increased levels of proteins associated with inflammation and immune response. One-quarter of plasma proteins increased in GPS are known to be synthesized outside of hematopoietic cells, predominantly in the liver. In summary, our data show that, in addition to the well-described platelet defects in GPS, there are immune defects. The abnormal immune cells may be the drivers of systemic abnormalities such as autoimmune disease.


Subject(s)
Cytoplasmic Granules/pathology , Genetic Heterogeneity , Gray Platelet Syndrome , Immune System/pathology , Phenotype , Biopsy , Blood Proteins/genetics , Case-Control Studies , Cohort Studies , Cytoplasmic Granules/metabolism , Diagnosis, Differential , Gene Frequency , Genetic Association Studies , Gray Platelet Syndrome/classification , Gray Platelet Syndrome/genetics , Gray Platelet Syndrome/immunology , Gray Platelet Syndrome/pathology , Humans , Immune System/physiology , Immune System Diseases/blood , Immune System Diseases/diagnosis , Immune System Diseases/genetics , Immune System Diseases/pathology , Mutation
4.
Blood ; 134(23): 2070-2081, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31217188

ABSTRACT

To identify novel causes of hereditary thrombocytopenia, we performed a genetic association analysis of whole-genome sequencing data from 13 037 individuals enrolled in the National Institute for Health Research (NIHR) BioResource, including 233 cases with isolated thrombocytopenia. We found an association between rare variants in the transcription factor-encoding gene IKZF5 and thrombocytopenia. We report 5 causal missense variants in or near IKZF5 zinc fingers, of which 2 occurred de novo and 3 co-segregated in 3 pedigrees. A canonical DNA-zinc finger binding model predicts that 3 of the variants alter DNA recognition. Expression studies showed that chromatin binding was disrupted in mutant compared with wild-type IKZF5, and electron microscopy revealed a reduced quantity of α granules in normally sized platelets. Proplatelet formation was reduced in megakaryocytes from 7 cases relative to 6 controls. Comparison of RNA-sequencing data from platelets, monocytes, neutrophils, and CD4+ T cells from 3 cases and 14 healthy controls showed 1194 differentially expressed genes in platelets but only 4 differentially expressed genes in each of the other blood cell types. In conclusion, IKZF5 is a novel transcriptional regulator of megakaryopoiesis and the eighth transcription factor associated with dominant thrombocytopenia in humans.


Subject(s)
Blood Platelets , Genetic Diseases, Inborn , Germ-Line Mutation , Ikaros Transcription Factor , Mutation, Missense , Thrombocytopenia , Thrombopoiesis/genetics , Blood Platelets/metabolism , Blood Platelets/ultrastructure , Chromatin/genetics , Chromatin/metabolism , Chromatin/ultrastructure , Cytoplasmic Granules/genetics , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/ultrastructure , Female , Gene Expression Regulation , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Genetic Diseases, Inborn/pathology , HEK293 Cells , Humans , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , Male , Thrombocytopenia/genetics , Thrombocytopenia/metabolism , Thrombocytopenia/pathology
5.
Blood ; 134(23): 2082-2091, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31064749

ABSTRACT

A targeted high-throughput sequencing (HTS) panel test for clinical diagnostics requires careful consideration of the inclusion of appropriate diagnostic-grade genes, the ability to detect multiple types of genomic variation with high levels of analytic sensitivity and reproducibility, and variant interpretation by a multidisciplinary team (MDT) in the context of the clinical phenotype. We have sequenced 2396 index patients using the ThromboGenomics HTS panel test of diagnostic-grade genes known to harbor variants associated with rare bleeding, thrombotic, or platelet disorders (BTPDs). The molecular diagnostic rate was determined by the clinical phenotype, with an overall rate of 49.2% for all thrombotic, coagulation, platelet count, and function disorder patients and a rate of 3.2% for patients with unexplained bleeding disorders characterized by normal hemostasis test results. The MDT classified 745 unique variants, including copy number variants (CNVs) and intronic variants, as pathogenic, likely pathogenic, or variants of uncertain significance. Half of these variants (50.9%) are novel and 41 unique variants were identified in 7 genes recently found to be implicated in BTPDs. Inspection of canonical hemostasis pathways identified 29 patients with evidence of oligogenic inheritance. A molecular diagnosis has been reported for 894 index patients providing evidence that introducing an HTS genetic test is a valuable addition to laboratory diagnostics in patients with a high likelihood of having an inherited BTPD.


Subject(s)
Blood Platelet Disorders , Hemorrhage , High-Throughput Nucleotide Sequencing , Thrombosis , Blood Platelet Disorders/diagnosis , Blood Platelet Disorders/genetics , Female , Gene Dosage , Hemorrhage/diagnosis , Hemorrhage/genetics , Hemostasis/genetics , Humans , Male , Thrombosis/diagnosis , Thrombosis/genetics
6.
Cell ; 176(4): 729-742.e18, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30661757

ABSTRACT

Hypothalamic melanocortin neurons play a pivotal role in weight regulation. Here, we examined the contribution of Semaphorin 3 (SEMA3) signaling to the development of these circuits. In genetic studies, we found 40 rare variants in SEMA3A-G and their receptors (PLXNA1-4; NRP1-2) in 573 severely obese individuals; variants disrupted secretion and/or signaling through multiple molecular mechanisms. Rare variants in this set of genes were significantly enriched in 982 severely obese cases compared to 4,449 controls. In a zebrafish mutagenesis screen, deletion of 7 genes in this pathway led to increased somatic growth and/or adiposity demonstrating that disruption of Semaphorin 3 signaling perturbs energy homeostasis. In mice, deletion of the Neuropilin-2 receptor in Pro-opiomelanocortin neurons disrupted their projections from the arcuate to the paraventricular nucleus, reduced energy expenditure, and caused weight gain. Cumulatively, these studies demonstrate that SEMA3-mediated signaling drives the development of hypothalamic melanocortin circuits involved in energy homeostasis.


Subject(s)
Energy Metabolism/genetics , Melanocortins/metabolism , Semaphorins/genetics , Adolescent , Adult , Animals , Body Weight , Cell Line , Child , Child, Preschool , Disease Models, Animal , Eating , Female , Genetic Variation/genetics , Homeostasis , Humans , Hypothalamus/metabolism , Leptin/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Obesity/genetics , Obesity/metabolism , Receptors, Cell Surface/metabolism , Semaphorins/metabolism , Young Adult , Zebrafish
7.
Haematologica ; 104(5): 1036-1045, 2019 05.
Article in English | MEDLINE | ID: mdl-30467204

ABSTRACT

Sphingolipids are fundamental to membrane trafficking, apoptosis, and cell differentiation and proliferation. KDSR or 3-keto-dihydrosphingosine reductase is an essential enzyme for de novo sphingolipid synthesis, and pathogenic mutations in KDSR result in the severe skin disorder erythrokeratodermia variabilis et progressiva-4 Four of the eight reported cases also had thrombocytopenia but the underlying mechanism has remained unexplored. Here we expand upon the phenotypic spectrum of KDSR deficiency with studies in two siblings with novel compound heterozygous variants associated with thrombocytopenia, anemia, and minimal skin involvement. We report a novel phenotype of progressive juvenile myelofibrosis in the propositus, with spontaneous recovery of anemia and thrombocytopenia in the first decade of life. Examination of bone marrow biopsies showed megakaryocyte hyperproliferation and dysplasia. Megakaryocytes obtained by culture of CD34+ stem cells confirmed hyperproliferation and showed reduced proplatelet formation. The effect of KDSR insufficiency on the sphingolipid profile was unknown, and was explored in vivo and in vitro by a broad metabolomics screen that indicated activation of an in vivo compensatory pathway that leads to normalization of downstream metabolites such as ceramide. Differentiation of propositus-derived induced pluripotent stem cells to megakaryocytes followed by expression of functional KDSR showed correction of the aberrant cellular and biochemical phenotypes, corroborating the critical role of KDSR in proplatelet formation. Finally, Kdsr depletion in zebrafish recapitulated the thrombocytopenia and showed biochemical changes similar to those observed in the affected siblings. These studies support an important role for sphingolipids as regulators of cytoskeletal organization during megakaryopoiesis and proplatelet formation.


Subject(s)
Alcohol Oxidoreductases/deficiency , Blood Platelets/pathology , Induced Pluripotent Stem Cells/pathology , Megakaryocytes/pathology , Sphingolipids/metabolism , Thrombocytopenia/etiology , Alcohol Oxidoreductases/genetics , Animals , Blood Platelets/metabolism , Cell Differentiation , Cells, Cultured , Child , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Megakaryocytes/metabolism , Metabolomics , Mutation , Pedigree , Prognosis , Thrombocytopenia/metabolism , Thrombocytopenia/pathology , Zebrafish
9.
Sci Rep ; 7(1): 4394, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28663568

ABSTRACT

Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS, which were sometimes found with accelerated growth rather than short stature as described previously. Nominally significant associations were found for rare functional variants in BBS1, BBS9, GNAS, MKKS, CLOCK and ANGPTL6. The p.S284X variant in ANGPTL6 drives the association signal (rs201622589, MAF~0.1%, odds ratio = 10.13, p-value = 0.042) and results in complete loss of secretion in cells. Further analysis including additional case-control studies and population controls (N = 260,642) did not support association of this variant with obesity (odds ratio = 2.34, p-value = 2.59 × 10-3), highlighting the challenges of testing rare variant associations and the need for very large sample sizes. Further validation in cohorts with severe obesity and engineering the variants in model organisms will be needed to explore whether human variants in ANGPTL6 and other genes that lead to obesity when deleted in mice, do contribute to obesity. Such studies may yield druggable targets for weight loss therapies.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Obesity, Morbid/genetics , Pediatric Obesity/genetics , Animals , Case-Control Studies , Chromogranins/chemistry , Chromogranins/genetics , Chromogranins/metabolism , Female , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Protein alpha Subunits, Gs/metabolism , Humans , Male , Mice , Models, Molecular , Mutation , Obesity, Morbid/diagnosis , Odds Ratio , Pediatric Obesity/diagnosis , Pedigree , Protein Conformation , Rodentia
10.
Blood ; 130(8): 1026-1030, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28637664

ABSTRACT

Heritable platelet function disorders (PFDs) are genetically heterogeneous and poorly characterized. Pathogenic variants in RASGRP2, which encodes calcium and diacylglycerol-regulated guanine exchange factor I (CalDAG-GEFI), have been reported previously in 3 pedigrees with bleeding and reduced platelet aggregation responses. To better define the phenotype associated with pathogenic RASGRP2 variants, we compared high-throughput sequencing and phenotype data from 2042 cases in pedigrees with unexplained bleeding or platelet disorders to data from 5422 controls. Eleven cases harbored 11 different, previously unreported RASGRP2 variants that were biallelic and likely pathogenic. The variants included 5 high-impact variants predicted to prevent CalDAG-GEFI expression and 6 missense variants affecting the CalDAG-GEFI CDC25 domain, which mediates Rap1 activation during platelet inside-out αIIbß3 signaling. Cases with biallelic RASGRP2 variants had abnormal mucocutaneous, surgical, and dental bleeding from childhood, requiring ≥1 blood or platelet transfusion in 78% of cases. Platelets displayed reduced aggregation in response to adenosine 5'-diphosphate and epinephrine, but variable aggregation defects with other agonists. There were no other consistent clinical or laboratory features. These data enable definition of human CalDAG-GEFI deficiency as a nonsyndromic, recessive PFD associated with a moderate or severe bleeding phenotype and complex defects in platelet aggregation.


Subject(s)
Blood Platelets/pathology , Guanine Nucleotide Exchange Factors/genetics , Hemorrhage/genetics , Mutation/genetics , Alleles , Base Sequence , Female , Humans , Male , Pedigree
11.
Blood ; 129(4): 520-524, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28064200

ABSTRACT

The von Willebrand receptor complex, which is composed of the glycoproteins Ibα, Ibß, GPV, and GPIX, plays an essential role in the earliest steps in hemostasis. During the last 4 decades, it has become apparent that loss of function of any 1 of 3 of the genes encoding these glycoproteins (namely, GP1BA, GP1BB, and GP9) leads to autosomal recessive macrothrombocytopenia complicated by bleeding. A small number of variants in GP1BA have been reported to cause a milder and dominant form of macrothrombocytopenia, but only 2 tentative reports exist of such a variant in GP1BB By analyzing data from a collection of more than 1000 genome-sequenced patients with a rare bleeding and/or platelet disorder, we have identified a significant association between rare monoallelic variants in GP1BB and macrothrombocytopenia. To strengthen our findings, we sought further cases in 2 additional collections in the United Kingdom and Japan. Across 18 families exhibiting phenotypes consistent with autosomal dominant inheritance of macrothrombocytopenia, we report on 27 affected cases carrying 1 of 9 rare variants in GP1BB.


Subject(s)
Blood Platelets/metabolism , Hemorrhage/genetics , Mutation , Platelet Glycoprotein GPIb-IX Complex/genetics , Thrombocytopenia/genetics , Alleles , Blood Platelets/pathology , Case-Control Studies , Female , Gene Expression , Genes, Dominant , Genome, Human , Hemorrhage/diagnosis , Hemorrhage/metabolism , Hemorrhage/pathology , High-Throughput Nucleotide Sequencing , Humans , Male , Pedigree , Platelet Count , Thrombocytopenia/diagnosis , Thrombocytopenia/metabolism , Thrombocytopenia/pathology
12.
Blood ; 127(23): 2791-803, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27084890

ABSTRACT

Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.


Subject(s)
Blood Platelet Disorders/genetics , Genetic Predisposition to Disease , Hemorrhage/genetics , High-Throughput Nucleotide Sequencing/methods , Thrombosis/genetics , Case-Control Studies , DNA Copy Number Variations , Female , Genetic Association Studies/methods , Humans , Male , Mutation , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods
13.
Sci Transl Med ; 8(328): 328ra30, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26936507

ABSTRACT

The Src family kinase (SFK) member SRC is a major target in drug development because it is activated in many human cancers, yet deleterious SRC germline mutations have not been reported. We used genome sequencing and Human Phenotype Ontology patient coding to identify a gain-of-function mutation in SRC causing thrombocytopenia, myelofibrosis, bleeding, and bone pathologies in nine cases. Modeling of the E527K substitution predicts loss of SRC's self-inhibitory capacity, which we confirmed with in vitro studies showing increased SRC kinase activity and enhanced Tyr(419) phosphorylation in COS-7 cells overexpressing E527K SRC. The active form of SRC predominates in patients' platelets, resulting in enhanced overall tyrosine phosphorylation. Patients with myelofibrosis have hypercellular bone marrow with trilineage dysplasia, and their stem cells grown in vitro form more myeloid and megakaryocyte (MK) colonies than control cells. These MKs generate platelets that are dysmorphic, low in number, highly variable in size, and have a paucity of α-granules. Overactive SRC in patient-derived MKs causes a reduction in proplatelet formation, which can be rescued by SRC kinase inhibition. Stem cells transduced with lentiviral E527K SRC form MKs with a similar defect and enhanced tyrosine phosphorylation levels. Patient-derived and E527K-transduced MKs show Y419 SRC-positive stained podosomes that induce altered actin organization. Expression of mutated src in zebrafish recapitulates patients' blood and bone phenotypes. Similar studies of platelets and MKs may reveal the mechanism underlying the severe bleeding frequently observed in cancer patients treated with next-generation SFK inhibitors.


Subject(s)
Bone and Bones/pathology , Hemorrhage/genetics , Mutation/genetics , Primary Myelofibrosis/genetics , Thrombocytopenia/genetics , src-Family Kinases/genetics , Animals , Blood Platelets/pathology , COS Cells , Chlorocebus aethiops , Female , Hematopoiesis , Hemorrhage/complications , Humans , Male , Pedigree , Phenotype , Primary Myelofibrosis/complications , Thrombocytopenia/complications , Transfection , Zebrafish
14.
Blood ; 127(23): 2903-14, 2016 06 09.
Article in English | MEDLINE | ID: mdl-26912466

ABSTRACT

Macrothrombocytopenia (MTP) is a heterogeneous group of disorders characterized by enlarged and reduced numbers of circulating platelets, sometimes resulting in abnormal bleeding. In most MTP, this phenotype arises because of altered regulation of platelet formation from megakaryocytes (MKs). We report the identification of DIAPH1, which encodes the Rho-effector diaphanous-related formin 1 (DIAPH1), as a candidate gene for MTP using exome sequencing, ontological phenotyping, and similarity regression. We describe 2 unrelated pedigrees with MTP and sensorineural hearing loss that segregate with a DIAPH1 R1213* variant predicting partial truncation of the DIAPH1 diaphanous autoregulatory domain. The R1213* variant was linked to reduced proplatelet formation from cultured MKs, cell clustering, and abnormal cortical filamentous actin. Similarly, in platelets, there was increased filamentous actin and stable microtubules, indicating constitutive activation of DIAPH1. Overexpression of DIAPH1 R1213* in cells reproduced the cytoskeletal alterations found in platelets. Our description of a novel disorder of platelet formation and hearing loss extends the repertoire of DIAPH1-related disease and provides new insight into the autoregulation of DIAPH1 activity.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Hearing Loss/genetics , Mutation , Thrombocytopenia/genetics , A549 Cells , Adolescent , Adult , Aged , Case-Control Studies , Cells, Cultured , Child , Female , Formins , Genetic Association Studies , Genetic Predisposition to Disease , HEK293 Cells , Hearing Loss/complications , Humans , Male , Middle Aged , Pedigree , Polymorphism, Single Nucleotide , Syndrome , Thrombocytopenia/complications , Young Adult
16.
Antioxid Redox Signal ; 14(8): 1425-36, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-20849372

ABSTRACT

Transcriptional coactivators and corepressors often have multiple targets and can have opposing actions on transcription and downstream physiological events. The coactivator peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α is under-expressed in Huntington's disease and is a regulator of antioxidant defenses and mitochondrial biogenesis. We show that in primary cortical neurons, expression of PGC-1α strongly promotes resistance to excitotoxic and oxidative stress in a cell autonomous manner, whereas knockdown increases sensitivity. In contrast, the transcriptional corepressor silencing mediator of retinoic acid and thyroid hormone receptors (SMRT) specifically antagonizes PGC-1α-mediated antioxidant effects. The antagonistic balance between PGC-1α and SMRT is upset in favor of PGC-1α by synaptic activity. Synaptic activity triggers nuclear export of SMRT reliant on multiple regions of the protein. Concomitantly, synaptic activity post-translationally enhances the transactivating potential of PGC-1α in a p38-dependent manner, as well as upregulating cyclic-AMP response element binding protein-dependent PGC-1α transcription. Activity-dependent targeting of PGC-1α results in enhanced gene expression mediated by the thyroid hormone receptor, a prototypical transcription factor coactivated by PGC-1α and repressed by SMRT. As a consequence of these events, SMRT is unable to antagonize PGC-1α-mediated resistance to oxidative stress in synaptically active neurons. Thus, PGC-1α and SMRT are antagonistic regulators of neuronal vulnerability to oxidative stress. Further, this coactivator-corepressor antagonism is regulated by the activity status of the cell, with implications for neuronal viability.


Subject(s)
Antioxidants/metabolism , Neurons/metabolism , Nuclear Receptor Co-Repressor 2/antagonists & inhibitors , Nuclear Receptor Co-Repressor 2/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Animals , Neurons/pathology , Nuclear Receptor Co-Repressor 2/genetics , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , RNA-Binding Proteins/genetics , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
17.
J Neurochem ; 114(3): 772-83, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20477944

ABSTRACT

Puma (p53 up-regulated modulator of apoptosis) is a BH3-only protein member of the Bcl-2 family that controls apoptosis by regulating the release of pro-apoptotic factors from mitochondria. Previously, we reported that sodium arsenite (NaAsO(2)) induces Puma-dependent apoptosis in cortical neurons in a p53-independent manner. The following evidence shows that p53-independent Puma activation by NaAsO(2) is mediated by the p53-related protein TAp73: (i) NaAsO(2) causes TAp73alpha accumulation and increases p53-independent expression of p73 target genes; (ii) two p53 response elements in the Puma promoter are required for NaAsO(2)-mediated activation of a Puma reporter construct; (iii) expression of the inhibitory DeltaNp73alpha and DeltaNp73beta isoforms decreases NaAsO(2)-mediated induction of Puma and other p53-family target genes in a p53-null background; (iv) DeltaNp73alpha and DeltaNp73beta expression protects the neurons from NaAsO(2)-dependent apoptosis. Interestingly, although ER stressors also induce p53-independent, Puma-dependent apoptosis, they do not increase TAp73 expression while NaAsO(2) does not induce notable endoplasmic reticulum (ER) stress. In contrast, DNA damaging agents, okadaic acid, and H(2)O(2) all induce apoptosis in a strictly Puma- and p53-dependent manner. Hence, the pivotal position of Puma as mediator of apoptosis in cortical neurons is because of the availability of at least three independent signalling pathways that ensure its activation.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Apoptosis/physiology , Cerebral Cortex/physiology , Nerve Degeneration/metabolism , Neurons/cytology , Nuclear Proteins/physiology , Tumor Suppressor Proteins/physiology , Animals , Animals, Newborn , Apoptosis Regulatory Proteins/genetics , Cerebral Cortex/cytology , Mice , Mice, Knockout , Nerve Degeneration/genetics , Nerve Degeneration/physiopathology , Neurons/physiology , Nuclear Proteins/genetics , Signal Transduction/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/physiology , Tumor Suppressor Proteins/genetics
18.
J Neurosci ; 30(7): 2623-35, 2010 Feb 17.
Article in English | MEDLINE | ID: mdl-20164347

ABSTRACT

Synaptic activity promotes resistance to diverse apoptotic insults, the mechanism behind which is incompletely understood. We show here that a coordinated downregulation of core components of the intrinsic apoptosis pathway by neuronal activity forms a key part of the underlying mechanism. Activity-dependent protection against apoptotic insults is associated with inhibition of cytochrome c release in most but not all neurons, indicative of anti-apoptotic signaling both upstream and downstream of this step. We find that enhanced firing activity suppresses expression of the proapoptotic BH3-only member gene Puma in a NMDA receptor-dependent, p53-independent manner. Puma expression is sufficient to induce cytochrome c loss and neuronal apoptosis. Puma deficiency protects neurons against apoptosis and also occludes the protective effect of synaptic activity, while blockade of physiological NMDA receptor activity in the developing mouse brain induces neuronal apoptosis that is preceded by upregulation of Puma. However, enhanced activity can also confer resistance to Puma-induced apoptosis, acting downstream of cytochrome c release. This mechanism is mediated by transcriptional suppression of apoptosome components Apaf-1 and procaspase-9, and limiting caspase-9 activity, since overexpression of procaspase-9 accelerates the rate of apoptosis in active neurons back to control levels. Synaptic activity does not exert further significant anti-apoptotic effects downstream of caspase-9 activation, since an inducible form of caspase-9 overrides the protective effect of synaptic activity, despite activity-induced transcriptional suppression of caspase-3. Thus, suppression of apoptotic gene expression may synergize with other activity-dependent events such as enhancement of antioxidant defenses to promote neuronal survival.


Subject(s)
Apoptosis/physiology , Neural Inhibition/physiology , Neurons/physiology , Signal Transduction/physiology , Synapses/physiology , 4-Aminopyridine/pharmacology , Analysis of Variance , Animals , Animals, Newborn , Apoptosis/drug effects , Apoptosis Regulatory Proteins/deficiency , Apoptosis Regulatory Proteins/metabolism , Apoptotic Protease-Activating Factor 1/metabolism , Bicuculline/pharmacology , Caspase 9/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Cytochromes c/metabolism , Dizocilpine Maleate/pharmacology , Dose-Response Relationship, Drug , Drug Combinations , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , GABA Antagonists/pharmacology , Green Fluorescent Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mutation/genetics , Neural Inhibition/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Potassium Channel Blockers , Signal Transduction/drug effects , Staurosporine/pharmacology , Synapses/drug effects , Tacrolimus/analogs & derivatives , Tacrolimus/pharmacology , Time Factors , Transfection/methods , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/metabolism , Up-Regulation/drug effects
19.
Epigenetics ; 4(3): 152-8, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19430206

ABSTRACT

Peroxiredoxins are neuroprotective antioxidant enzymes that reduce hydroperoxides and protect neurons against oxidative stress. However, they can be inactivated through hyperoxidation of their active site cysteine, an event that can take place in the brain in response to oxidative insults such as stroke and also normal aging. Synaptic activity promotes the reduction of hyperoxidized peroxiredoxins in neurons, and induces the expression of sulfiredoxin (Srxn1) and sestrin 2 (Sesn2) which have been reported to mediate this. We have investigated the importance of histone acetylation in the regulation of these genes, to understand more about how these genes are regulated by synaptic activity. We show that the sestrin 2 promoter undergoes activity-dependent histone acetylation, which contributes to its transcriptional activation. In contrast, promoter-proximal histone acetylation is not involved in the activity-dependent induction of sulfiredoxin. Nevertheless, expression of both sestrin 2 and sulfiredoxin can be induced by enhancing histone acetylation through treatment of neurons with the histone deacetylase inhibitor trichostatin A (TSA). Furthermore, protective doses of TSA inhibit the formation of hyperoxidized peroxiredoxins in neurons exposed to oxidative insults. Histone deacetylases are emerging therapeutic targets in neurodegenerative disorders associated with oxidative stress. Our results indicate that manipulating the histone acetylase-deacetylase balance in neurons may mimic the effects of synaptic activity in preventing the oxidative inactivation of peroxiredoxins.


Subject(s)
Epigenesis, Genetic , Histones/metabolism , Oxidoreductases Acting on Sulfur Group Donors/genetics , Synapses/metabolism , Synaptic Transmission/genetics , Acetylation , Animals , Cells, Cultured , Histone Deacetylase Inhibitors , Hydroxamic Acids/pharmacology , Neurons/metabolism , Promoter Regions, Genetic , Rats
20.
Oxid Med Cell Longev ; 2(2): 110-3, 2009.
Article in English | MEDLINE | ID: mdl-20357934

ABSTRACT

Post-mitotic neurons must have strong antioxidant defenses to survive the lifespan of the organism. We recently showed that neuronal antioxidant defenses are boosted by synaptic activity. Elevated synaptic activity, acting via the N-methyl-D-aspartate (NMDA) receptor, enhances thioredoxin activity, facilitates the reduction of hyperoxidized peroxiredoxins, and promotes resistance to oxidative stress. In contrast, blockade of spontaneous synaptic NMDA receptor activity renders neurons highly sensitive to hyperoxidation of peroxiredoxins by oxidative insults. These NMDA receptor-dependent effects are mediated in part by a coordinated program of gene expression changes centered on the thioredoxin-peroxiredoxin system, a thiol-based enzymatic system which is an important reducer of oxidative stressors such as hydroperoxides. We show here that while too little glutamatergic activity can render neurons vulnerable to peroxiredoxin hyperoxidation, so can too much. Exposure of neurons to toxic concentrations of glutamate, activating both synaptic and extrasynaptic NMDA receptors, acutely induces peroxiredoxin hyperoxidation. Thus, the effect of NMDA receptor activity on the activity of neuronal peroxiredoxins follows the classical U-shaped dose response curve.


Subject(s)
Neurotoxins/toxicity , Peroxiredoxins/metabolism , Animals , Cells, Cultured , Glutamic Acid/toxicity , Oxidative Stress , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Thioredoxins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...