Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
J Diabetes Sci Technol ; : 19322968231153419, 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36772835

ABSTRACT

BACKGROUND: The objective of this work is to develop a highly miniaturized, low-power, biosensing platform for continuous glucose monitoring (CGM). This platform is based on an application-specific integrated circuit (ASIC) chip that interfaces with an amperometric glucose-sensing element. To reduce both size and power requirements, this custom ASIC chip was implemented using 65-nm complementary metal oxide semiconductor (CMOS) technology node. Interfacing this chip to a frequency-counting microprocessor with storage capabilities, a miniaturized transcutaneous CGM system can be constructed for small laboratory animals, with long battery life. METHOD: A 0.45 mm × 1.12 mm custom ASIC chip was first designed and implemented using the Taiwan Semiconductor Manufacturing Company (TSMC) 65-nm CMOS technology node. This ASIC chip was then interfaced with a multi-layer amperometric glucose-sensing element and a frequency-counting microprocessor with storage capabilities. Variation in glucose levels generates a linear increase in frequency response of this ASIC chip. In vivo experiments were conducted in healthy Sprague Dawley rats. RESULTS: This highly miniaturized, 65-nm custom ASIC chip has an overall power consumption of circa 36 µW. In vitro testing shows that this ASIC chip produces a linear (R2 = 99.5) frequency response to varying glucose levels (from 2 to 25 mM), with a sensitivity of 1278 Hz/mM. In vivo testing in unrestrained healthy rats demonstrated long-term CGM (six days/per charge) with rapid glucose response to glycemic variations induced by isoflurane anesthesia and tail vein injection. CONCLUSIONS: The miniature footprint of the biosensor platform, together with its low-power consumption, renders this CMOS ASIC chip a versatile platform for a variety of highly miniaturized devices, intended to improve the quality of life of patients with type 1 and type 2 diabetes.

2.
J Diabetes Sci Technol ; 15(3): 646-654, 2021 05.
Article in English | MEDLINE | ID: mdl-31786953

ABSTRACT

BACKGROUND: An anti-inflammatory drug-loaded composite coating (dexamethasone-loaded poly (lactic-co-glycolic acid) [PLGA] microspheres/polyvinyl alcohol [PVA] hydrogel) was previously developed to counter the foreign body reaction to a fully implantable continuous glucose monitoring biosensor. The long-term sensor functionality was ensured in the presence of the drug-loaded composite coating thus facilitating better diabetes control and management. In order to advance such a drug-device combination product toward clinical testing, addressing sterilization remains a key step due to the heterogeneity of the product components. The main objective of this research was to investigate the effect of two terminal sterilization techniques: gamma radiation and ethylene oxide (EO) on the stability of the anti-inflammatory coatings as well as retention of the glucose sensing ability of the implantable sensor. METHOD: The composite coatings, their individual components, and the glucose-sensing elements of the biosensor were subjected to low-temperature gamma radiation and EO cycles. Detailed characterization was conducted on all components before and after sterilization. RESULTS: Exposure to gamma radiation affected dexamethasone crystallinity and glucose response linearity of the sensing element, whereas physical aging of microspheres in composite coatings was observed poststerilization with EO. Despite these effects, dexamethasone drug release from coatings was not significantly affected by either technique. CONCLUSION: The research findings indicate that both sterilization techniques are feasible for the sterilization of the dexamethasone-loaded PLGA microspheres/PVA hydrogel composite coatings, while EO was preferred for the sterilization of the glucose-sensing element of the biosensor.


Subject(s)
Biosensing Techniques , Pharmaceutical Preparations , Blood Glucose , Blood Glucose Self-Monitoring , Dexamethasone , Glucose , Humans , Lactic Acid , Microspheres , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Sterilization
3.
J Control Release ; 289: 35-43, 2018 11 10.
Article in English | MEDLINE | ID: mdl-30261203

ABSTRACT

The application of dexamethasone releasing poly (lactic-co-glycolic acid) (PLGA) microspheres embedded in a poly vinyl alcohol (PVA) hydrogel coatings have been successfully used in the suppression of the foreign body response (FBR) to implantable glucose sensors. In the current study, dexamethasone-loaded PLGA microspheres were prepared by blending two types of PLGA polymers (RG503H and DLG7E with MW of ca. 25 kDa and 113 kDa, respectively) to achieve long-term (6 months) inhibition of the FBR. The microsphere composition was optimized according to the in vitro drug release profiles. Microspheres with DLG7E/RG503H/dexamethasone = 70/13.3/16.7 wt% composition, when embedded in a PVA hydrogel, provided a continuous drug release for 6 months. By combining the aforementioned microspheres with microspheres composed solely of the DLG7E polymer within a similar PVA hydrogel realized an even longer (>7 months) in vitro drug release. A heat map was constructed to depict the daily in vitro drug released and elucidate possible lag phases that could affect the pharmacodynamic response. These drug-loaded implant coatings were investigated in vivo (rat model) and showed inhibition of the foreign body response for 6 months. These results suggest that the minimum effective daily dose to counter chronic inflammation is ca. 0.1 µg per mg of coating surrounding a 0.5 × 0.5 × 5 mm silicon implant (dummy sensor). Accordingly, these drug-eluting composite coatings can ensure long-term inflammation control for miniaturized implantable devices.


Subject(s)
Dexamethasone/administration & dosage , Drug Implants/administration & dosage , Foreign-Body Reaction/drug therapy , Hydrogels/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polyvinyl Alcohol/chemistry , Animals , Biosensing Techniques , Blood Glucose/analysis , Blood Glucose Self-Monitoring/instrumentation , Coated Materials, Biocompatible , Delayed-Action Preparations , Drug Carriers , Drug Liberation , Male , Microspheres , Particle Size , Rats, Sprague-Dawley
4.
ACS Sens ; 2(12): 1779-1787, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29115132

ABSTRACT

Nanopatterning as a surface area enhancement method has the potential to increase signal and sensitivity of biosensors. Platinum-based bulk metallic glass (Pt-BMG) is a biocompatible material with electrical properties conducive for biosensor electrode applications, which can be processed in air at comparably low temperatures to produce nonrandom topography at the nanoscale. Work presented here employs nanopatterned Pt-BMG electrodes functionalized with glucose oxidase enzyme to explore the impact of nonrandom and highly reproducible nanoscale surface area enhancement on glucose biosensor performance. Electrochemical measurements including cyclic voltammetry (CV) and amperometric voltammetry (AV) were completed to compare the performance of 200 nm Pt-BMG electrodes vs Flat Pt-BMG control electrodes. Glucose dosing response was studied in a range of 2 mM to 10 mM. Effective current density dynamic range for the 200 nm Pt-BMG was 10-12 times greater than that of the Flat BMG control. Nanopatterned electrode sensitivity was measured to be 3.28 µA/cm2/mM, which was also an order of magnitude greater than the flat electrode. These results suggest that nonrandom nanotopography is a scalable and customizable engineering tool which can be integrated with Pt-BMGs to produce biocompatible biosensors with enhanced signal and sensitivity.


Subject(s)
Biosensing Techniques/instrumentation , Glass/chemistry , Glucose/analysis , Platinum/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Enzymes, Immobilized/chemistry , Glucose/chemistry , Glucose Oxidase/chemistry , Reproducibility of Results , Surface Properties
5.
J Am Chem Soc ; 138(18): 5904-15, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27127896

ABSTRACT

One of the greatest challenges with single-walled carbon nanotube (SWNT) photovoltaics and nanostructured devices is maintaining the nanotubes in their pristine state (i.e., devoid of aggregation and inhomogeneous doping) so that their unique spectroscopic and transport characteristics are preserved. To this effect, we report on the synthesis and self-assembly of a C60-functionalized flavin (FC60), composed of PCBM and isoalloxazine moieties attached on either ends of a linear, C-12 aliphatic spacer. Small amounts of FC60 (up to 3 molar %) were shown to coassembly with an organic soluble derivative of flavin (FC12) around SWNTs and impart effective dispersion and individualization. A key annealing step was necessary to perfect the isoalloxazine helix and expel the C60 moiety away from the nanotubes. Steady-state and transient absorption spectroscopy illustrate that 1% or higher incorporation of FC60 allows for an effective photoinduced charge transfer quenching of the encased SWNTs through the seamless helical encase. This is enabled via the direct π-π overlap between the graphene sidewalls, isoalloxazine helix, and the C60 cage that facilitates SWNT exciton dissociation and electron transfer to the PCBM moiety. Atomistic molecular simulations indicate that the stability of the complex originates from enhanced van der Waals interactions of the flexible spacer wrapped around the fullerene that brings the C60 in π-π overlap with the isoalloxazine helix. The remarkable spectral purity (in terms of narrow E(S)ii line widths) for the resulting ground-state complex signals a new class of highly organized supramolecular nanotube architecture with profound importance for advanced nanostructured devices.


Subject(s)
Flavins/chemistry , Fullerenes/chemistry , Nanotubes, Carbon/chemistry , Computer Simulation , Graphite/chemistry , Indicators and Reagents , Models, Molecular , Molecular Conformation , Molecular Dynamics Simulation , Photochemical Processes
6.
J Control Release ; 228: 170-178, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-26965956

ABSTRACT

The aim of this study was to understand the polymer degradation and drug release mechanism from PLGA microspheres embedded in a PVA hydrogel. Two types of microspheres were prepared with different molecular weight PLGA polymers (approximately 25 and 7 kDa) to achieve different drug release profiles, with a 9-day lag phase and without a lag phase, respectively. The kinetics of water uptake into the microspheres coincided with the drug release profiles for both formulations. For the 25 kDa microspheres, minimal water uptake was observed in the early part of the lag phase followed by substantial water uptake at the later stages and in the drug release phase. For the 7 kDa microspheres, water uptake occurred simultaneously with drug release. Water uptake was approximately 2-3 times that of the initial microsphere weight for both formulations. The internal structure of the PLGA microspheres was evaluated using low temperature scanning electron microscopy (cryo-SEM). Burst drug release occurred followed by pore forming from the exterior to the core of both microspheres. A well-defined hydrogel/microsphere interface was observed. For the 25 kDa microspheres, internal pore formation and swelling occurred before the second drug release phase. The surface layer of the microspheres remained intact whereas swelling, and degradation of the core continued throughout the drug release period. In addition, microsphere swelling reduced glucose transport through the coatings in PBS media and this was considered to be a as a consequence of the increased thickness of the coatings. The combination of the swelling and microdialysis results provides a fresh understanding on the competing processes affecting molecular transport of bioanalytes (i.e. glucose) through these composite coatings during prolonged exposure in PBS.


Subject(s)
Drug Carriers/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Polyvinyl Alcohol/chemistry , Diffusion , Drug Liberation , Glucose/chemistry , Microspheres , Polylactic Acid-Polyglycolic Acid Copolymer , Water/chemistry
7.
J Diabetes Sci Technol ; 9(5): 966-77, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26306495

ABSTRACT

BACKGROUND: Implantable biosensors for continuous glucose monitoring can greatly improve diabetes management. However, their applications are still associated with some challenges and one of these is the gradual functionality loss postimplantation as a consequence of the foreign body response (FBR). Sensor miniaturization in combination with drug-eluting biocompatible coatings is a promising strategy to enhance in vivo performance. However, limited study has been performed to understand the effect of initial trauma and implant size on foreign body reaction as well as in vivo performance of implantable glucose sensors. METHODS: Different initial trauma was induced by implanting composite coated dummy sensors into rats using various sized needles and 3 different-sized dummy sensors were implanted to examine the size effect. Histological evaluation was performed to relate the inflammatory cell counts and foreign body capsule thickness with the implantation needle size and sensor size respectively. The effect of biocompatible coating on the performance of implantable glucose sensors was determined using both coated amperometric glucose sensors and microdialysis probes. RESULTS: The results revealed that the degree of acute inflammation was mainly controlled by the extent of the initial trauma: the greater the trauma, the greater the acute inflammatory response. Implant size did not affect the acute inflammatory phase. However, the extent of chronic inflammation and fibrous encapsulation were affected by sensor size: the smaller the size the less the extent of chronic inflammation and fibrous encapsulation. Glucose sensors implanted using 14 gauge needles showed significantly lower initial in vivo response compared to those implanted using 16 gauge needles. This was not observed for sensors with dexamethasone-eluting biocompatible coatings since inflammation was suppressed. CONCLUSIONS: The results of the current study indicate that the extent of the inflammatory response post-sensor implantation varies as a function of the initial tissue trauma as well as the sensor size. Accordingly, miniaturization of implantable biosensors together with the utilization of a drug-eluting biocompatible composite coating may be a promising strategy to achieve long-term reliable continuous glucose monitoring.


Subject(s)
Biosensing Techniques/instrumentation , Foreign-Body Reaction/etiology , Prostheses and Implants/adverse effects , Animals , Biosensing Techniques/methods , Male , Rats , Rats, Sprague-Dawley
8.
Mol Pharm ; 12(9): 3332-8, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26237140

ABSTRACT

The foreign body reaction (FBR), one of the body's defense mechanisms against foreign materials, results in loss of implant biocompatibility. A popular strategy to prevent FBR is the constant release of dexamethasone in the tissue surrounding the implant. However, FBR prevention has not been sufficiently studied in large animal models, which offer a better representation of the human subcutaneous tissue physiology. Accordingly, a long-term strategy to prevent FBR to subcutaneous implants in a large animal model is necessary to translate the existing research for clinical applications. Here, a poly(lactic-co-glycolic) (PLGA) microsphere/poly(vinyl alcohol) (PVA) hydrogel composite coating for one-month prevention of FBR in Gottingen minipigs was developed. A modified PLGA microsphere formulation process is presented, that utilizes coprecipitation of dexamethasone and PLGA. Traditional methods result in heterogeneous distribution of large drug crystals in the microsphere matrix, which in turn results in low drug loading since the drug crystal size is close to that of the microspheres. The modified microsphere preparation method showed homogeneous distribution of dexamethasone, which in turn gave rise to increased drug loading, low burst release, and minimal lag phase. Elimination of the lag phase was dictated from previous work that compared FBR between rats and minipigs. The ability of the coatings to improve implant biocompatibility was successfully tested in vivo via histological examination of explanted tissue from the area surrounding the implants. The biocompatible coatings presented here are suitable for miniaturized implantable devices, such as biosensors, that require constant communication with the local microenvironment.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dexamethasone/pharmacology , Foreign-Body Reaction/prevention & control , Microspheres , Polyglycolic Acid/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Dexamethasone/chemistry , Female , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Lactic Acid/chemistry , Models, Animal , Polyvinyl Alcohol/chemistry , Prostheses and Implants , Rats , Swine , Swine, Miniature
9.
J Control Release ; 214: 103-11, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26216396

ABSTRACT

Dexamethasone-releasing PLGA poly(lactic-co-glycolic acid) microsphere/PVA (polyvinyl alcohol) hydrogel composite coatings have been shown to prevent the foreign body reaction (FBR) to subcutaneous implants in small and large animal models. Such coatings were developed to extend the lifetime of implantable biosensors. However, long-term exposure of tissue to low levels of dexamethasone results in a reduction in blood vessel density due to the anti-angiogenic effect of dexamethasone. This mild effect, while not threatening to the subject's health, may interfere with analyte detection and the sensor response time over the long-term. The present work is focused on the development of coatings that deliver combinations of three tissue response modifiers (TRMs): dexamethasone, VEGF (vascular endothelial growth factor) and PDGF (platelet derived growth factor). Dexamethasone, VEGF and PDGF prevent the FBR, increase angiogenesis and promote blood vessel maturation (which increases blood flow), respectively. To minimize any potential interference among these three TRMs (for example, PDGF increases fibrosis), the relative doses of dexamethasone, VEGF and PDGF were adjusted. It was determined that: a) all three TRMs are required for maximum promotion of angiogenesis, blood vessel maturation and prevention of the FBR; b) VEGF has to be administered at higher doses than PDGF; c) an increase in dexamethasone dosing must be accompanied by a proportional increase in growth factor dosing; and d) modification of the TRM ratio can achieve a constant capillary density throughout the implantation period which is important for applications such as biosensors to maintain sensitivity and a stable sensor baseline. Moreover, an osmosis-driven process for encapsulation of proteins in PLGA microspheres that showed low burst release was developed.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/therapeutic use , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Foreign-Body Reaction/prevention & control , Neovascularization, Pathologic/prevention & control , Animals , Chemistry, Pharmaceutical , Drug Implants , Hydrogels , Lactic Acid , Male , Microspheres , Particle Size , Platelet-Derived Growth Factor/pharmacology , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Polyvinyl Alcohol , Rats , Rats, Sprague-Dawley , Subcutaneous Tissue , Vascular Endothelial Growth Factor A/pharmacology
10.
Sensors (Basel) ; 15(3): 6091-104, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25774709

ABSTRACT

Integrated microfluidic devices with nanosized array electrodes and microfiltration capabilities can greatly increase sensitivity and enhance automation in immunoassay devices. In this contribution, we utilize the edge-patterning method of thin aluminum (Al) films in order to form nano- to micron-sized gaps. Evaporation of high work-function metals (i.e., Au, Ag, etc.) on these gaps, followed by Al lift-off, enables the formation of electrical uniform nanowires from low-cost, plastic-based, photomasks. By replacing Al with chromium (Cr), the formation of high resolution, custom-made photomasks that are ideal for low-cost fabrication of a plurality of array devices were realized. To demonstrate the feasibility of such Cr photomasks, SU-8 micro-pillar masters were formed and replicated into PDMS to produce micron-sized filters with 3-4 µm gaps and an aspect ratio of 3. These microfilters were capable of retaining 6 µm beads within a localized site, while allowing solvent flow. The combination of nanowire arrays and micro-pillar filtration opens new perspectives for rapid R&D screening of various microfluidic-based immunoassay geometries, where analyte pre-concentration and highly sensitive, electrochemical detection can be readily co-localized.


Subject(s)
Aluminum/chemistry , Immunoassay/instrumentation , Microfluidic Analytical Techniques/instrumentation , Chromium/chemistry , Nanowires/chemistry
11.
J Control Release ; 202: 101-7, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25645376

ABSTRACT

In this work, the foreign body reaction (FBR) to small subcutaneous implants was compared between small (rodent) and large (swine) animal species for the first time. Dexamethasone-releasing poly(lactic-co-glycolic acid) microspheres/polyvinyl alcohol hydrogel composite coatings were adapted to prevent FBR to small, subcutaneous implants in a large animal model (Goettingen minipigs). The implants consisted of small silicon chips (used to mimic small medical devices) that were coated with the composite formulations. The stages of the FBR were compared with previous studies in rats (that used the same-sized implants); the onset and severity of chronic inflammation (collagen deposition) was identified as a key difference between the two species. In the absence of inflammation control, fibrosis was observed from day 7 post-implantation in minipigs, whereas in rats this did not occur until day 14. This is significant as swine skin is the most commonly used model for preclinical testing of dermal formulations. It was determined that for long-term prevention of the FBR (longer than 24h), a lag phase in dexamethasone release between days 1 and 10 did not affect the anti-FBR properties of the implant in rats. However, continuous release of dexamethasone, with no lag phase, was necessary to prevent inflammation in minipigs (effective dexamethasone dose was 100µg delivered immediately after implantation and 10µg/day delivered continuously thereafter). This study offers significant insight into the translation of anti-FBR strategies across species, and showcases the importance of tailoring the controlled release kinetics of the formulation to the host response.


Subject(s)
Dexamethasone/administration & dosage , Foreign-Body Reaction/prevention & control , Microspheres , Animals , Dexamethasone/chemistry , Female , Lactic Acid/chemistry , Models, Animal , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Polyvinyl Alcohol/chemistry , Prostheses and Implants , Rats , Swine , Swine, Miniature
12.
J Am Chem Soc ; 136(20): 7452-63, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24821307

ABSTRACT

Establishing methods to accurately assess and model the binding strength of surfactants around a given-chirality single-walled carbon nanotube (SWNT) are crucial for selective enrichment, targeted functionalization, and spectrally sharp nanodevices. Unlike surfactant exchange, which is subject to interferences from the second surfactant, we herein introduce a thermal dissociation method based on reversible H(+)/O2 doping to determine SWNT/surfactant thermodynamic stability values with greater fidelity. Thermodynamic values were reproduced using molecular mechanics augmented by ab initio calculations in order to better assess π-π interactions. This afforded detailed quantification of the flavin binding strength in terms of π-π stacking (55-58%), with the remaining portion roughly split 3:1 between electrostatic plus van der Waals flavin mononucleotide (FMN) interdigitation and H-bonding interactions, respectively. Quasi-epitaxial π-π alignment between the near-armchair FMN helix and the underlying nanotube lattice plays a crucial role in stabilizing these assemblies. The close resemblance of the thermal dissociation method to helix-coil and ligand-binding transitions of DNA opens up a unique insight into the molecular engineering of self-organizing surfactants around various-chirality nanotubes.


Subject(s)
Dinitrocresols/chemistry , Nanotubes, Carbon/chemistry , Thermodynamics , Molecular Conformation , Molecular Dynamics Simulation , Quantum Theory , Static Electricity
13.
J Mater Chem B ; 2(1)2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24392222

ABSTRACT

Nanomaterials and biomaterials are important components of new electrochemical arrays designed for sensitive detection of proteins in biological fluids. Such multiplexed protein arrays are predicted to have an important future in personalized medical diagnostics, especially for cancer and heart disease. Sandwich immunoassays for proteins benefit greatly in sensitivity from the use of nanostructured sensor surfaces and multilabeled detection strategies involving nano- or microparticles. In these assays, capture agents such as antibodies or aptamers are attached to sensor surfaces in the array. Target proteins with large binding constants for the affinity agents are captured from liquid samples with high efficiency, either on the sensors or on magnetic bioconjugate particles decorated with many copies of labels and antibodies. After target proteins are captured on the sensor surfaces, the labels are detected by electrochemical techniques. This feature article begins with an overview of the recent history of nanoparticles in electrochemical protein sensors, then moves on to specific examples from our own laboratories. We discuss fabrication of nanostructured sensors and arrays with the aim of multiplexed detection as well as reusability. Following this, we describe systems that integrate particle-based protein sensing with microfluidics for multiplexed protein detection. We end with predictions on the diagnostic future of protein detection.

14.
J Diabetes Sci Technol ; 7(2): 441-51, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23567003

ABSTRACT

OBJECTIVE: Needle-implantable sensors have shown to provide reliable continuous glucose monitoring for diabetes management. In order to reduce tissue injury during sensor implantation, there is a constant need for device size reduction, which imposes challenges in terms of sensitivity and reliability, as part of decreasing signal-to-noise and increasing layer complexity. Herein, we report sensitivity enhancement via electrochemical surface rebuilding of the working electrode (WE), which creates a three-dimensional nanoporous configuration with increased surface area. METHODS: The gold WE was electrochemically rebuilt to render its surface nanoporous followed by decoration with platinum nanoparticles. The efficacy of such process was studied using sensor sensitivity against hydrogen peroxide (H2O2). For glucose detection, the WE was further coated with five layers, namely, (1) polyphenol, (2) glucose oxidase, (3) polyurethane, (4) catalase, and (5) dexamethasone-releasing poly(vinyl alcohol)/poly(lactic-co-glycolic acid) composite. The amperometric response of the glucose sensor was noted in vitro and in vivo. RESULTS: Scanning electron microscopy revealed that electrochemical rebuilding of the WE produced a nanoporous morphology that resulted in a 20-fold enhancement in H2O2 sensitivity, while retaining >98% selectivity. This afforded a 4-5-fold increase in overall glucose response of the glucose sensor when compared with a control sensor with no surface rebuilding and fittable only within an 18 G needle. The sensor was able to reproducibly track in vivo glycemic events, despite the large background currents typically encountered during animal testing. CONCLUSION: Enhanced sensor performance in terms of sensitivity and large signal-to-noise ratio has been attained via electrochemical rebuilding of the WE. This approach also bypasses the need for conventional and nanostructured mediators currently employed to enhance sensor performance.


Subject(s)
Blood Glucose Self-Monitoring/instrumentation , Blood Glucose/analysis , Electrodes, Implanted , Electroplating/methods , Blood Glucose Self-Monitoring/methods , Coated Materials, Biocompatible/chemical synthesis , Coated Materials, Biocompatible/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Needles , Platinum/chemistry , Prosthesis Implantation , Reproducibility of Results , Sensitivity and Specificity , Surface Properties
15.
J Control Release ; 169(3): 341-7, 2013 Aug 10.
Article in English | MEDLINE | ID: mdl-23298616

ABSTRACT

Application of implantable glucose biosensors for "real-time" monitoring is reliant on controlling the negative tissue reaction at the sensor tissue interphase. A novel polymer coating consisting of poly(lactic-co-glycolic) acid (PLGA) microsphere dispersed in poly(vinyl alcohol) (PVA) hydrogels was evaluated in combination with dummy sensors as a "smart" drug eluting biocompatible coating for implantable biosensors to prevent the foreign body response, and thus enhance sensor performance in vivo. The polymeric microspheres slowly release tissue-modifying drugs at the implantation sites to control the inflammation and fibrous encapsulation, while the hydrogel allows rapid analyte diffusion to the sensing elements. Dummy sensors with identical dimensions to that of the functional glucose sensors (0.5×0.5×5mm) were coated with the PLGA/PVA composites using a mold fabrication process. Both normal and diabetic rats were used in the current study to investigate the effect of the diabetic state on tissue sensor interactions. It was evident that the PLGA/PVA hydrogel composite was able to form a uniform coating around the dummy sensor and stayed intact throughout the course of the study (one month). Tissue samples containing dummy sensors that were coated with dexamethasone free composites exhibited acute and chronic inflammation as well as fibrous encapsulation in both normal and diabetic rats. However, the diabetic rats exhibited decreased intensity and delayed onset of the foreign body response following implantation of drug free dummy sensors in comparison to those of normal rats. On the other hand, tissues containing dummy sensors that were coated with dexamethasone containing composites remained normal (i.e. similar to untreated tissues), with no inflammatory reaction or fibrous encapsulation occurring over the one-month period in both the normal and diabetic rats. The feasibility of utilizing PLGA microsphere/PVA hydrogel composites as coatings for implantable biosensors was demonstrated. This polymeric composite is an innovative approach to control the foreign body reaction at the tissue-device interface to prolong biosensor lifetime.


Subject(s)
Biosensing Techniques , Coated Materials, Biocompatible/chemistry , Hydrogels/chemistry , Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Polyvinyl Alcohol/chemistry , Prostheses and Implants , Animals , Anti-Inflammatory Agents/administration & dosage , Biosensing Techniques/instrumentation , Blood Glucose/analysis , Dexamethasone/administration & dosage , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/surgery , Male , Polylactic Acid-Polyglycolic Acid Copolymer , Rats , Rats, Sprague-Dawley
16.
Biomed Microdevices ; 15(1): 151-60, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22992979

ABSTRACT

Implantable sensors for continuous glucose monitoring hold great potential for optimal diabetes management. This is often undermined by a variety of issues associated with: (1) negative tissue response; (2) poor sensor performance; and (3) lack of device miniaturization needed to reduce implantation trauma. Herein, we report our initial results towards constructing an implantable device that simultaneously address all three aforementioned issues. In terms of device miniaturization, a highly miniaturized CMOS (complementary metal-oxide-semiconductor) potentiostat and signal processing unit was employed (with a combined area of 0.665 mm(2)). The signal processing unit converts the current generated by a transcutaneous, Clark-type amperometric sensor to output frequency in a linear fashion. The Clark-type amperometric sensor employs stratification of five functional layers to attain a well-balanced mass transfer which in turn yields a linear sensor response from 0 to 25 mM of glucose concentration, well beyond the physiologically observed (2 to 22 mM) range. In addition, it is coated with a thick polyvinyl alcohol (PVA) hydrogel with embedded poly(lactic-co-glycolic acid) (PLGA) microspheres intended to provide continuous, localized delivery of dexamethasone to suppress inflammation and fibrosis. In vivo evaluation in rat model has shown that the transcutaneous sensor system reproducibly tracks repeated glycemic events. Clarke's error grid analysis on the as-obtained glycemic data has indicated that all of the measured glucose readings fell in the desired Zones A & B and none fell in the erroneous Zones C, D and E. Such reproducible operation of the transcutaneous sensor system, together with low power (140 µW) consumption and capability for current-to-frequency conversion renders this a versatile platform for continuous glucose monitoring and other biomedical sensing devices.


Subject(s)
Blood Glucose Self-Monitoring/instrumentation , Glucose/analysis , Miniaturization/instrumentation , Prostheses and Implants , Skin , Animals , Biosensing Techniques , Electrochemistry , Lactic Acid/chemistry , Male , Metals/chemistry , Oxides/chemistry , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Polyvinyl Alcohol/chemistry , Rats , Rats, Sprague-Dawley , Semiconductors
17.
Chem Mater ; 24(21): 4043-4050, 2012 Nov 13.
Article in English | MEDLINE | ID: mdl-23230347

ABSTRACT

It was recently shown that, by controlling the O(2) concentration, the seeded-growth of CdSe nanocrystals (NC) can be manipulated to proceed either unidirectionally (from the (0001) facet) or three-dimensionally. In this contribution, we investigate two new Se precursors (i.e. SeO(2) and NaHSe) and compare them with Se obtained from etching of smaller NC seeds. Under anaerobic conditions, both precursors led to successful 3-dimensional (3D) NC growth. At high O(2) concentrations, the seeded growth of rods was enhanced by the NaHSe precursor, while impeded by the use of SeO(2). Mechanistic studies showed that the reduction of SeO(2) to Se(2-) produces an excessive amount of O(2). This leads to rod fragmentation due to etching as well as the production of deep traps that quench their luminescence. These new precursors, along with a heightened understanding of oxygen's role, expand the synthetic repertoire of the redox-assisted, seeded-growth of CdSe and better position this low temperature (125 °C) methodology towards realizing advanced NC heterostructures.

18.
Sensors (Basel) ; 12(10): 13402-16, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23202001

ABSTRACT

The performance of implantable electrochemical glucose sensors is highly dependent on the flux-limiting (glucose, H(2)O(2), O(2)) properties of their outer membranes. A careful understanding of the diffusion profiles of the participating species throughout the sensor architecture (enzyme and membrane layer) plays a crucial role in designing a robust sensor for both in vitro and in vivo operation. This paper reports the results from the mathematical modeling of Clark's first generation amperometric glucose sensor coated with layer-by-layer assembled outer membranes in order to obtain and compare the diffusion profiles of various participating species and their effect on sensor performance. Devices coated with highly glucose permeable (HAs/Fe(3+)) membranes were compared with devices coated with PSS/PDDA membranes, which have an order of magnitude lower permeability. The simulation showed that the low glucose permeable membrane (PSS/PDDA) sensors exhibited a 27% higher amperometric response than the high glucose permeable (HAs/Fe(3+)) sensors. Upon closer inspection of H(2)O(2)diffusion profiles, this non-typical higher response from PSS/PDDA is not due to either a larger glucose flux or comparatively larger O(2) concentrations within the sensor geometry, but rather is attributed to a 48% higher H(2)O(2) concentration in the glucose oxidase enzyme layer of PSS/PDDA coated sensors as compared to HAs/Fe(3+) coated ones. These simulated results corroborate our experimental findings reported previously. The high concentration of H(2)O(2) in the PSS/PDDA coated sensors is due to the low permeability of H(2)O(2) through the PSS/PDDA membrane, which also led to an undesired increase in sensor response time. Additionally, it was found that this phenomenon occurs for all enzyme thicknesses investigated (15, 20 and 25 nm), signifying the need for a holistic approach in designing outer membranes for amperometric biosensors.


Subject(s)
Biosensing Techniques/instrumentation , Coated Materials, Biocompatible/chemistry , Glucose/analysis , Models, Theoretical , Electrodes, Implanted , Humans , Infusion Pumps, Implantable , Insulin Infusion Systems , Membranes, Artificial
19.
J Am Chem Soc ; 134(32): 13196-9, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22871052

ABSTRACT

In order to truly unlock advanced applications of single-walled carbon nanotubes (SWNTs), one needs to separate them according to both chirality and handedness. Here we show that the chiral D-ribityl phosphate chain of flavin mononucleotide (FMN) induces a right-handed helix that enriches the left-handed SWNTs for all suspended (n,m) species. Such enantioselectivity stems from the sp(3) hybridization of the N atom anchoring the sugar moiety to the flavin ring. This produces two FMN conformations (syn and anti) analogous to DNA. Electrostatic interactions between the neighboring uracil moiety and the 2'-OH group of the side chain provide greater stability to the anti-FMN conformation that leads to a right-handed FMN helix. The right-handed twist that the FMN helix imposes to the underlying nanotube, similar to "Indian burn", causes diameter dilation of only the left-handed SWNTs, whose improved intermolecular interactions with the overlaying FMN helix, impart enantioselection.


Subject(s)
Flavin Mononucleotide/chemistry , Models, Biological , Nanotubes, Carbon/chemistry , Circular Dichroism , Hydrogen Bonding , Protein Structure, Secondary , Stereoisomerism
20.
J Diabetes Sci Technol ; 6(6): 1445-53, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23294792

ABSTRACT

BACKGROUND: Hydrogels alone and in combination with microsphere drug delivery systems are being considered as biocompatible coatings for implantable glucose biosensors to prevent/minimize the foreign body response. Previously, our group has demonstrated that continuous release of dexamethasone from poly(lactic-co-glycolic acid) (PLGA) microsphere/poly(vinyl alcohol) (PVA) hydrogel composites can successfully prevent foreign body response at the implantation site. The objective of this study was to investigate the effect of this composite coating on sensor functionality. METHODS: The PLGA microsphere/PVA hydrogel coatings were prepared and applied to glucose biosensors. The swelling properties of the composite coatings and their diffusivity to glucose were evaluated as a function of microsphere loading. Sensor linearity, response time, and sensitivity were also evaluated as a function of coating composition. RESULTS: The PLGA microsphere/PVA hydrogel composite coating did not compromise sensor linearity (sensors were linear up to 30 mM), which is well beyond the physiological glucose range (2 to 22 mM). The sensor response time did increase in the presence of the coating (from 10 to 19 s); however, this response time was still less than the average reported values. Although the sensitivity of the sensors decreased from 73 to 62 nA/mM glucose when the PLGA microsphere loading in the PVA hydrogel changed from 0 to 100 mg/ml, this reduced sensitivity is acceptable for sensor functionality. The changes in sensor response time and sensitivity were due to changes in glucose permeability as a result of the coatings. The embedded PLGA microspheres reduced the fraction of bulk water present in the hydrogel matrix and consequently reduced glucose diffusion. CONCLUSIONS: This study demonstrates that the PLGA microsphere/PVA hydrogel composite coatings allow sufficient glucose diffusion and sensor functionality and therefore may be utilized as a smart coating for implantable glucose biosensors to enhance their in vivo functionality.


Subject(s)
Biosensing Techniques/instrumentation , Blood Glucose Self-Monitoring/instrumentation , Blood Glucose/analysis , Dexamethasone/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Biosensing Techniques/methods , Diffusion , Lactic Acid/chemistry , Microspheres , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Prostheses and Implants
SELECTION OF CITATIONS
SEARCH DETAIL
...