Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Bull Earthq Eng ; 22(3): 1309-1357, 2024.
Article in English | MEDLINE | ID: mdl-38419620

ABSTRACT

The present work offers a comprehensive overview of methods related to condition assessment of bridges through Structural Health Monitoring (SHM) procedures, with a particular interest on aspects of seismic assessment. Established techniques pertaining to different levels of the SHM hierarchy, reflecting increasing detail and complexity, are first outlined. A significant portion of this review work is then devoted to the overview of computational intelligence schemes across various aspects of bridge condition assessment, including sensor placement and health tracking. The paper concludes with illustrative examples of two long-span suspension bridges, in which several instrumentation aspects and assessments of seismic response issues are discussed.

2.
Sensors (Basel) ; 21(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068203

ABSTRACT

A framework for optimal sensor placement (OSP) for virtual sensing using the modal expansion technique and taking into account uncertainties is presented based on information and utility theory. The framework is developed to handle virtual sensing under output-only vibration measurements. The OSP maximizes a utility function that quantifies the expected information gained from the data for reducing the uncertainty of quantities of interest (QoI) predicted at the virtual sensing locations. The utility function is extended to make the OSP design robust to uncertainties in structural model and modeling error parameters, resulting in a multidimensional integral of the expected information gain over all possible values of the uncertain parameters and weighted by their assigned probability distributions. Approximate methods are used to compute the multidimensional integral and solve the optimization problem that arises. The Gaussian nature of the response QoI is exploited to derive useful and informative analytical expressions for the utility function. A thorough study of the effect of model, prediction and measurement errors and their uncertainties, as well as the prior uncertainties in the modal coordinates on the selection of the optimal sensor configuration is presented, highlighting the importance of accounting for robustness to errors and other uncertainties.

3.
R Soc Open Sci ; 8(1): 200531, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33614060

ABSTRACT

Effective intervention strategies for epidemics rely on the identification of their origin and on the robustness of the predictions made by network disease models. We introduce a Bayesian uncertainty quantification framework to infer model parameters for a disease spreading on a network of communities from limited, noisy observations; the state-of-the-art computational framework compensates for the model complexity by exploiting massively parallel computing architectures. Using noisy, synthetic data, we show the potential of the approach to perform robust model fitting and additionally demonstrate that we can effectively identify the disease origin via Bayesian model selection. As disease-related data are increasingly available, the proposed framework has broad practical relevance for the prediction and management of epidemics.

4.
Swiss Med Wkly ; 150: w20445, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33327002

ABSTRACT

The systematic identification of infected individuals is critical for the containment of the COVID-19 pandemic. Currently, the spread of the disease is mostly quantified by the reported numbers of infections, hospitalisations, recoveries and deaths; these quantities inform epidemiology models that provide forecasts for the spread of the epidemic and guide policy making. The veracity of these forecasts depends on the discrepancy between the numbers of reported, and unreported yet infectious, individuals. We combine Bayesian experimental design with an epidemiology model and propose a methodology for the optimal allocation of limited testing resources in space and time, which maximises the information gain for such unreported infections. The proposed approach is applicable at the onset and spread of the epidemic and can forewarn of a possible recurrence of the disease after relaxation of interventions. We examine its application in Switzerland; the open source software is, however, readily adaptable to countries around the world. We find that following the proposed methodology can lead to vastly less uncertain predictions for the spread of the disease, thus improving estimates of the effective reproduction number and the future number of unreported infections. This information can provide timely and systematic guidance for the effective identification of infectious individuals and for decision-making regarding lockdown measures and the distribution of vaccines.


Subject(s)
COVID-19 Testing/methods , COVID-19/epidemiology , Communicable Disease Control/methods , Epidemiological Monitoring , Health Policy , Resource Allocation/methods , Bayes Theorem , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19/transmission , Diagnostic Services/supply & distribution , Forecasting , Humans , Random Allocation , SARS-CoV-2 , Switzerland/epidemiology
5.
Sensors (Basel) ; 20(14)2020 Jul 11.
Article in English | MEDLINE | ID: mdl-32664472

ABSTRACT

Mechanics-based dynamic models are commonly used in the design and performance assessment of structural systems, and their accuracy can be improved by integrating models with measured data. This paper provides an overview of hierarchical Bayesian model updating which has been recently developed for probabilistic integration of models with measured data, while accounting for different sources of uncertainties and modeling errors. The proposed hierarchical Bayesian framework allows one to explicitly account for pertinent sources of variability such as ambient temperatures and/or excitation amplitudes, as well as modeling errors, and therefore yields more realistic predictions. The paper reports observations from applications of hierarchical approach to three full-scale civil structural systems, namely (1) a footbridge, (2) a 10-story reinforced concrete (RC) building, and (3) a damaged 2-story RC building. The first application highlights the capability of accounting for temperature effects within the hierarchical framework, while the second application underlines the effects of considering bias for prediction error. Finally, the third application considers the effects of excitation amplitude on structural response. The findings underline the importance and capabilities of the hierarchical Bayesian framework for structural identification. Discussions of its advantages and performance over classical deterministic and Bayesian model updating methods are provided.

6.
Swiss Med Wkly ; 150: w20313, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32677705

ABSTRACT

The reproduction number is broadly considered as a key indicator for the spreading of the COVID-19 pandemic. Its estimated value is a measure of the necessity and, eventually, effectiveness of interventions imposed in various countries. Here we present an online tool for the data-driven inference and quantification of uncertainties for the reproduction number, as well as the time points of interventions for 51 European countries. The study relied on the Bayesian calibration of the SIR model with data from reported daily infections from these countries. The model fitted the data, for most countries, without individual tuning of parameters. We also compared the results of SIR and SEIR models, which give different estimates of the reproduction number, and provided an analytical relationship between the respective numbers. We deployed a Bayesian inference framework with efficient sampling algorithms, to present a publicly available graphical user interface (https://cse-lab.ethz.ch/coronavirus) that allows the user to assess and compare predictions for pairs of European countries. The results quantified the rate of the disease’s spread before and after interventions, and provided a metric for the effectiveness of non-pharmaceutical interventions in different countries. They also indicated how geographic proximity and the times of interventions affected the progression of the epidemic.


Subject(s)
Basic Reproduction Number/statistics & numerical data , Coronavirus Infections , Disease Transmission, Infectious/statistics & numerical data , Epidemiological Monitoring , Pandemics , Pneumonia, Viral , Bayes Theorem , Betacoronavirus/isolation & purification , COVID-19 , Communicable Disease Control/methods , Communicable Disease Control/statistics & numerical data , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Disease Transmission, Infectious/prevention & control , Epidemiologic Measurements , Europe/epidemiology , Humans , Pandemics/prevention & control , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Uncertainty
7.
Biomimetics (Basel) ; 5(1)2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32182929

ABSTRACT

Fish schooling implies an awareness of the swimmers for their companions. In flow mediated environments, in addition to visual cues, pressure and shear sensors on the fish body are critical for providing quantitative information that assists the quantification of proximity to other fish. Here we examine the distribution of sensors on the surface of an artificial swimmer so that it can optimally identify a leading group of swimmers. We employ Bayesian experimental design coupled with numerical simulations of the two-dimensional Navier Stokes equations for multiple self-propelled swimmers. The follower tracks the school using information from its own surface pressure and shear stress. We demonstrate that the optimal sensor distribution of the follower is qualitatively similar to the distribution of neuromasts on fish. Our results show that it is possible to identify accurately the center of mass and the number of the leading swimmers using surface only information.

8.
R Soc Open Sci ; 6(10): 182229, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31824680

ABSTRACT

Patient-specific modelling of haemodynamics in arterial networks has so far relied on parameter estimation for inexpensive or small-scale models. We describe here a Bayesian uncertainty quantification framework which makes two major advances: an efficient parallel implementation, allowing parameter estimation for more complex forward models, and a system for practical model selection, allowing evidence-based comparison between distinct physical models. We demonstrate the proposed methodology by generating simulated noisy flow velocity data from a branching arterial tree model in which a structural defect is introduced at an unknown location; our approach is shown to accurately locate the abnormality and estimate its physical properties even in the presence of significant observational and systemic error. As the method readily admits real data, it shows great potential in patient-specific parameter fitting for haemodynamical flow models.

9.
Sci Rep ; 7(1): 16576, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29185461

ABSTRACT

The Lennard-Jones (LJ) potential is a cornerstone of Molecular Dynamics (MD) simulations and among the most widely used computational kernels in science. The LJ potential models atomistic attraction and repulsion with century old prescribed parameters (q = 6, p = 12, respectively), originally related by a factor of two for simplicity of calculations. We propose the inference of the repulsion exponent through Hierarchical Bayesian uncertainty quantification We use experimental data of the radial distribution function and dimer interaction energies from quantum mechanics simulations. We find that the repulsion exponent p ≈ 6.5 provides an excellent fit for the experimental data of liquid argon, for a range of thermodynamic conditions, as well as for saturated argon vapour. Calibration using the quantum simulation data did not provide a good fit in these cases. However, values p ≈ 12.7 obtained by dimer quantum simulations are preferred for the argon gas while lower values are promoted by experimental data. These results show that the proposed LJ 6-p potential applies to a wider range of thermodynamic conditions, than the classical LJ 6-12 potential. We suggest that calibration of the repulsive exponent in the LJ potential widens the range of applicability and accuracy of MD simulations.

10.
J Chem Phys ; 145(24): 244112, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-28049338

ABSTRACT

We propose a hierarchical Bayesian framework to systematically integrate heterogeneous data for the calibration of force fields in Molecular Dynamics (MD) simulations. Our approach enables the fusion of diverse experimental data sets of the physico-chemical properties of a system at different thermodynamic conditions. We demonstrate the value of this framework for the robust calibration of MD force-fields for water using experimental data of its diffusivity, radial distribution function, and density. In order to address the high computational cost associated with the hierarchical Bayesian models, we develop a novel surrogate model based on the empirical interpolation method. Further computational savings are achieved by implementing a highly parallel transitional Markov chain Monte Carlo technique. The present method bypasses possible subjective weightings of the experimental data in identifying MD force-field parameters.

11.
J Phys Chem B ; 117(47): 14808-16, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24161163

ABSTRACT

For over five decades, molecular dynamics (MD) simulations have helped to elucidate critical mechanisms in a broad range of physiological systems and technological innovations. MD simulations are synergetic with experiments, relying on measurements to calibrate their parameters and probing "what if scenarios" for systems that are difficult to investigate experimentally. However, in certain systems, such as nanofluidics, the results of experiments and MD simulations differ by several orders of magnitude. This discrepancy may be attributed to the spatiotemporal scales and structural information accessible by experiments and simulations. Furthermore, MD simulations rely on parameters that are often calibrated semiempirically, while the effects of their computational implementation on their predictive capabilities have only been sporadically probed. In this work, we show that experimental and MD investigations can be consolidated through a rigorous uncertainty quantification framework. We employ a Bayesian probabilistic framework for large scale MD simulations of graphitic nanostructures in aqueous environments. We assess the uncertainties in the MD predictions for quantities of interest regarding wetting behavior and hydrophobicity. We focus on three representative systems: water wetting of graphene, the aggregation of fullerenes in aqueous solution, and the water transport across carbon nanotubes. We demonstrate that the dominant mode of calibrating MD potentials in nanoscale fluid mechanics, through single values of water contact angle on graphene, leads to large uncertainties and fallible quantitative predictions. We demonstrate that the use of additional experimental data reduces uncertainty, improves the predictive accuracy of MD models, and consolidates the results of experiments and simulations.

12.
J Chem Phys ; 137(14): 144103, 2012 Oct 14.
Article in English | MEDLINE | ID: mdl-23061835

ABSTRACT

We present a Bayesian probabilistic framework for quantifying and propagating the uncertainties in the parameters of force fields employed in molecular dynamics (MD) simulations. We propose a highly parallel implementation of the transitional Markov chain Monte Carlo for populating the posterior probability distribution of the MD force-field parameters. Efficient scheduling algorithms are proposed to handle the MD model runs and to distribute the computations in clusters with heterogeneous architectures. Furthermore, adaptive surrogate models are proposed in order to reduce the computational cost associated with the large number of MD model runs. The effectiveness and computational efficiency of the proposed Bayesian framework is demonstrated in MD simulations of liquid and gaseous argon.


Subject(s)
Molecular Dynamics Simulation , Uncertainty , Bayes Theorem , Calibration , Markov Chains , Monte Carlo Method
SELECTION OF CITATIONS
SEARCH DETAIL
...