Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
BMC Public Health ; 22(1): 2279, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36471295

ABSTRACT

Non-pharmacological interventions (e.g., stay-at-home orders, school closures, physical distancing) implemented during the COVID-19 pandemic are expected to have modified routines and lifestyles, eventually impacting key exposome parameters, including, among others, physical activity, diet and cleaning habits. The objectives were to describe the exposomic profile of the general Cypriot population and compliance to the population-wide measures implemented during March-May 2020 to lower the risk of SARS-CoV-2 transmission, and to simulate the population-wide measures' effect on social contacts and SARS-CoV-2 spread. A survey was conducted in March-May 2020 capturing different exposome parameters, e.g., individual characteristics, lifestyle/habits, time spent and contacts at home/work/elsewhere. We described the exposome parameters and their correlations. In an exposome-wide association analysis, we used the number of hours spent at home as an indicator of compliance to the measures. We generated synthetic human proximity networks, before and during the measures using the dynamic-[Formula: see text]1 model and simulated SARS-CoV-2 transmission (i.e., to identify possible places where higher transmission/number of cases could originate from) on the networks with a dynamic Susceptible-Exposed-Infectious-Recovered model. Overall, 594 respondents were included in the analysis (mean age 45.7 years, > 50% in very good health and communicating daily with friends/family via phone/online). The median number of contacts at home and at work decreased during the measures (from 3 to 2 and from 12 to 0, respectively) and the hours spent at home increased, indicating compliance with the measures. Increased time spent at home during the measures was associated with time spent at work before the measures (ß= -0.87, 95% CI [-1.21,-0.53]) as well as with being retired vs employed (ß= 2.32, 95% CI [1.70, 2.93]). The temporal network analysis indicated that most cases originated at work, while the synthetic human proximity networks adequately reproduced the observed SARS-CoV-2 spread. Exposome approaches (i.e., holistic characterization of the spatiotemporal variation of multiple exposures) would aid the comprehensive description of population-wide measures' impact and explore how behaviors and networks may shape SARS-CoV-2 transmission.


Subject(s)
COVID-19 , Exposome , Humans , Middle Aged , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Cyprus/epidemiology
2.
Phys Rev E ; 105(2-1): 024302, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35291072

ABSTRACT

We derive the most basic dynamical properties of random hyperbolic graphs (the distributions of contact and intercontact durations) in the hot regime (network temperature T>1). We show that for sufficiently large networks the contact distribution decays as a power law with exponent 2+T>3 for durations t>T, while for t3. However, the intercontact distribution exhibits power-law decays with exponent 2-T∈(0,1) for T∈(1,2), while for T>2 it displays linear decays with a slope that depends on the observation interval. This result holds irrespective of the expected degree distribution as long as it has a finite Tth moment if T∈(1,2), or a finite second moment if T>2. Otherwise, the intercontact distribution depends on the expected degree distribution and if the latter is a power law with exponent γ∈(2,3), then the former decays as a power law with exponent 3-γ∈(0,1). Thus, hot random hyperbolic graphs can give rise to contact and intercontact distributions that both decay as power laws. These power laws, however, are unrealistic for the case of the intercontact distribution, as their exponent is always less than one. These results mean that hot random hyperbolic graphs are not adequate for modeling real temporal networks, in stark contrast to cold random hyperbolic graphs (T<1). Since the configuration model emerges at T→∞, these results also suggest that this is not an adequate null temporal network model.

3.
Phys Rev E ; 106(6-1): 064312, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36671145

ABSTRACT

We consider and analyze a dynamic model of random hyperbolic graphs with link persistence. In the model, both connections and disconnections can be propagated from the current to the next snapshot with probability ω∈[0,1). Otherwise, with probability 1-ω, connections are reestablished according to the random hyperbolic graphs model. We show that while the persistence probability ω affects the averages of the contact and intercontact distributions, it does not affect the tails of these distributions, which decay as power laws with exponents that do not depend on ω. We also consider examples of real temporal networks, and we show that the considered model can adequately reproduce several of their dynamical properties. Our results advance our understanding of the realistic modeling of temporal networks and of the effects of link persistence on temporal network properties.


Subject(s)
Models, Molecular , Probability
4.
Phys Rev E ; 103(5-1): 052307, 2021 May.
Article in English | MEDLINE | ID: mdl-34134209

ABSTRACT

Models of complex networks often incorporate node-intrinsic properties abstracted as hidden variables. The probability of connections in the network is then a function of these variables. Real-world networks evolve over time and many exhibit dynamics of node characteristics as well as of linking structure. Here we introduce and study natural temporal extensions of static hidden-variable network models with stochastic dynamics of hidden variables and links. The dynamics is controlled by two parameters: one that tunes the rate of change of hidden variables and another that tunes the rate at which node pairs reevaluate their connections given the current values of hidden variables. Snapshots of networks in the dynamic models are equivalent to networks generated by the static models only if the link reevaluation rate is sufficiently larger than the rate of hidden-variable dynamics or if an additional mechanism is added whereby links actively respond to changes in hidden variables. Otherwise, links are out of equilibrium with respect to hidden variables and network snapshots exhibit structural deviations from the static models. We examine the level of structural persistence in the considered models and quantify deviations from staticlike behavior. We explore temporal versions of popular static models with community structure, latent geometry, and degree heterogeneity. While we do not attempt to directly model real networks, we comment on interesting qualitative resemblances to real systems. In particular, we speculate that links in some real networks are out of equilibrium with respect to hidden variables, partially explaining the presence of long-ranged links in geometrically embedded systems and intergroup connectivity in modular systems. We also discuss possible extensions, generalizations, and applications of the introduced class of dynamic network models.

5.
Sci Rep ; 10(1): 20244, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33219308

ABSTRACT

Human proximity networks are temporal networks representing the close-range proximity among humans in a physical space. They have been extensively studied in the past 15 years as they are critical for understanding the spreading of diseases and information among humans. Here we address the problem of mapping human proximity networks into hyperbolic spaces. Each snapshot of these networks is often very sparse, consisting of a small number of interacting (i.e., non-zero degree) nodes. Yet, we show that the time-aggregated representation of such systems over sufficiently large periods can be meaningfully embedded into the hyperbolic space, using methods developed for traditional (non-mobile) complex networks. We justify this compatibility theoretically and validate it experimentally. We produce hyperbolic maps of six different real systems, and show that the maps can be used to identify communities, facilitate efficient greedy routing on the temporal network, and predict future links with significant precision. Further, we show that epidemic arrival times are positively correlated with the hyperbolic distance from the infection sources in the maps. Thus, hyperbolic embedding could also provide a new perspective for understanding and predicting the behavior of epidemic spreading in human proximity systems.


Subject(s)
Personal Space , Algorithms , Computer Simulation , Humans , Models, Biological
6.
Phys Rev E ; 100(5-1): 052313, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31870016

ABSTRACT

Proximity networks are time-varying graphs representing the closeness among humans moving in a physical space. Their properties have been extensively studied in the past decade as they critically affect the behavior of spreading phenomena and the performance of routing algorithms. Yet the mechanisms responsible for their observed characteristics remain elusive. Here we show that many of the observed properties of proximity networks emerge naturally and simultaneously in a simple latent space network model, called dynamic-S^{1}. The dynamic-S^{1} does not model node mobility directly but captures the connectivity in each snapshot-each snapshot in the model is a realization of the S^{1} model of traditional complex networks, which is isomorphic to hyperbolic geometric graphs. By forgoing the motion component the model facilitates mathematical analysis, allowing us to prove the contact, intercontact, and weight distributions. We show that these distributions are power laws in the thermodynamic limit with exponents lying within the ranges observed in real systems. Interestingly, we find that network temperature plays a central role in network dynamics, dictating the exponents of these distributions, the time-aggregated agent degrees, and the formation of unique and recurrent components. Further, we show that paradigmatic epidemic and rumor-spreading processes perform similarly in real and modeled networks. The dynamic-S^{1} or extensions of it may apply to other types of time-varying networks and constitute the basis of maximum likelihood estimation methods that infer the node coordinates and their evolution in the latent spaces of real systems.

7.
Phys Rev E ; 99(1-1): 012322, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30780334

ABSTRACT

Recent progress towards unraveling the hidden geometric organization of real multiplexes revealed significant correlations across the hyperbolic node coordinates in different network layers, which facilitated applications like translayer link prediction and mutual navigation. But, are geometric correlations alone sufficient to explain the topological relation between the layers of real systems? Here, we provide the negative answer to this question. We show that connections in real systems tend to persist from one layer to another irrespective of their hyperbolic distances. This suggests that in addition to purely geometric aspects, the explicit link formation process in one layer impacts the topology of other layers. Based on this finding, we present a simple modification to the recently developed geometric multiplex model to account for this effect, and show that the extended model can reproduce the behavior observed in real systems. We also find that link persistence is significant in all considered multiplexes and can explain their layers' high edge overlap, which cannot be explained by coordinate correlations alone. Furthermore, by taking both link persistence and hyperbolic distance correlations into account, we can improve translayer link prediction. These findings guide the development of multiplex embedding methods, suggesting that such methods should account for both coordinate correlations and link persistence across layers.

8.
Phys Rev Lett ; 121(25): 258301, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30608847

ABSTRACT

We show that the social dynamics responsible for the formation of connected components that appear recurrently in face-to-face interaction networks find a natural explanation in the assumption that the agents of the temporal network reside in a hidden similarity space. Distances between the agents in this space act as similarity forces directing their motion towards other agents in the physical space and determining the duration of their interactions. By contrast, if such forces are ignored in the motion of the agents recurrent components do not form, although other main properties of such networks can still be reproduced.


Subject(s)
Interpersonal Relations , Models, Theoretical , Face/physiology , Humans , Models, Biological , Models, Psychological , Social Behavior
9.
Phys Rev Lett ; 118(21): 218301, 2017 May 26.
Article in English | MEDLINE | ID: mdl-28598659

ABSTRACT

We show that real multiplex networks are unexpectedly robust against targeted attacks on high-degree nodes and that hidden interlayer geometric correlations predict this robustness. Without geometric correlations, multiplexes exhibit an abrupt breakdown of mutual connectivity, even with interlayer degree correlations. With geometric correlations, we instead observe a multistep cascading process leading into a continuous transition, which apparently becomes fully continuous in the thermodynamic limit. Our results are important for the design of efficient protection strategies and of robust interacting networks in many domains.

10.
Phys Rev E ; 95(3-1): 032309, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28415237

ABSTRACT

Despite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.

11.
Article in English | MEDLINE | ID: mdl-26382454

ABSTRACT

We introduce and explore a method for inferring hidden geometric coordinates of nodes in complex networks based on the number of common neighbors between the nodes. We compare this approach to the HyperMap method, which is based only on the connections (and disconnections) between the nodes, i.e., on the links that the nodes have (or do not have). We find that for high degree nodes, the common-neighbors approach yields a more accurate inference than the link-based method, unless heuristic periodic adjustments (or "correction steps") are used in the latter. The common-neighbors approach is computationally intensive, requiring O(t4) running time to map a network of t nodes, versus O(t3) in the link-based method. But we also develop a hybrid method with O(t3) running time, which combines the common-neighbors and link-based approaches, and we explore a heuristic that reduces its running time further to O(t2), without significant reduction in the mapping accuracy. We apply this method to the autonomous systems (ASs) Internet, and we reveal how soft communities of ASs evolve over time in the similarity space. We further demonstrate the method's predictive power by forecasting future links between ASs. Taken altogether, our results advance our understanding of how to efficiently and accurately map real networks to their latent geometric spaces, which is an important necessary step toward understanding the laws that govern the dynamics of nodes in these spaces, and the fine-grained dynamics of network connections.

12.
Nature ; 489(7417): 537-40, 2012 Sep 27.
Article in English | MEDLINE | ID: mdl-22972194

ABSTRACT

The principle that 'popularity is attractive' underlies preferential attachment, which is a common explanation for the emergence of scaling in growing networks. If new connections are made preferentially to more popular nodes, then the resulting distribution of the number of connections possessed by nodes follows power laws, as observed in many real networks. Preferential attachment has been directly validated for some real networks (including the Internet), and can be a consequence of different underlying processes based on node fitness, ranking, optimization, random walks or duplication. Here we show that popularity is just one dimension of attractiveness; another dimension is similarity. We develop a framework in which new connections optimize certain trade-offs between popularity and similarity, instead of simply preferring popular nodes. The framework has a geometric interpretation in which popularity preference emerges from local optimization. As opposed to preferential attachment, our optimization framework accurately describes the large-scale evolution of technological (the Internet), social (trust relationships between people) and biological (Escherichia coli metabolic) networks, predicting the probability of new links with high precision. The framework that we have developed can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon.


Subject(s)
Internet/statistics & numerical data , Metabolic Networks and Pathways , Models, Theoretical , Social Networking , Escherichia coli/metabolism , Humans , Models, Biological , Probability , Reproducibility of Results , Trust
13.
Nat Commun ; 1: 62, 2010 Sep 07.
Article in English | MEDLINE | ID: mdl-20842196

ABSTRACT

The Internet infrastructure is severely stressed. Rapidly growing overheads associated with the primary function of the Internet-routing information packets between any two computers in the world-cause concerns among Internet experts that the existing Internet routing architecture may not sustain even another decade. In this paper, we present a method to map the Internet to a hyperbolic space. Guided by a constructed map, which we release with this paper, Internet routing exhibits scaling properties that are theoretically close to the best possible, thus resolving serious scaling limitations that the Internet faces today. Besides this immediate practical viability, our network mapping method can provide a different perspective on the community structure in complex networks.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(3 Pt 2): 036106, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21230138

ABSTRACT

We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and statistical mechanics of complex networks. This mapping interprets edges in a network as noninteracting fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of these energies or distances. The geometric network ensemble subsumes the standard configuration model and classical random graphs as two limiting cases with degenerate geometric structures. Finally, we show that targeted transport processes without global topology knowledge, made possible by our geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 2): 035101, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19905164

ABSTRACT

We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the internet into the hyperbolic plane and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of internet routing.


Subject(s)
Models, Biological , Nerve Net/physiology , Signal Transduction/physiology , Computer Simulation , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...