Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38203932

ABSTRACT

Extensive research has been dedicated to the solution-processable white organic light-emitting diodes (WOLEDs), which can potentially influence future solid-state lighting and full-color flat-panel displays. The proposed strategy based on WOLEDs involves blending two or more emitting polymers or copolymerizing two or more emitting chromophores with different doping concentrations to produce white light emission from a single layer. Toward this direction, the development of blends was conducted using commercial blue poly(9,9-di-n-octylfluorenyl2,7-diyl) (PFO), green poly(9,9-dioctylfluorenealt-benzothiadiazole) (F8BT), and red spiro-copolymer (SPR) light-emitting materials, whereas the synthesized copolymers were based on different chromophores, namely distyryllanthracene, distyrylcarbazole, and distyrylbenzothiadiazole, as yellow, blue, and orange-red emitters, respectively. A comparative study between the two approaches was carried out to examine the main challenge for these doping systems, which is ensuring the proper balance of emissions from all the units to span the entire visible range. The emission characteristics of fabricated WOLEDs will be explored in terms of controlling the emission from each emitter, which depends on two possible mechanisms: energy transfer and carrier trapping. The aim of this work is to achieve pure white emission through the color mixing from different emitters based on different doping concentrations, as well as color stability during the device operation. According to these aspects, the WOLED devices based on the copolymers of two chromophores exhibit the most encouraging results regarding white color emission coordinates (0.28, 0.31) with a CRI value of 82.

2.
Nanomaterials (Basel) ; 12(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432386

ABSTRACT

Obtaining white light from organic LEDs is a considerable challenge and, to realize white light emission, many studies have been conducted, primarily addressing two- or three-color blend systems as a promising strategy. In this work, pristine films, grown by spin coating, consisting of commercial blue Poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO), green Poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT), and red spiro-copolymer (SPR) light-emitting materials, were studied as reference materials. Afterward, binary (SPR doped in host PFO) and ternary (SPR and F8BT doped in host PFO) thin films were successfully prepared with various ratios. The characterization of the as-grown and thermally-treated blend films was focused on their optical and photophysical properties. After, the fabrication of OLED devices on glass substrates was carried out for the evaluation of a blend's composition and annealing in terms of the devices' electrical characteristics and electro-emission properties in order to achieve white light emission. Their analysis provided insights into the energy transfer mechanisms between the constituent materials, which were correlated to host-guest interactions as well as to the structural changes originated by thermal treatment, leading to the crystallization of PFO. Finally, the OLEDs based on ternary blends approach the white light emission with (x, y) of (0.272, 0.346). These fabricated devices also exhibit turn-on voltages as low as 3 V, accompanied by remarkable luminance values above 3000 cd/m2.

3.
Nanomaterials (Basel) ; 11(10)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34685063

ABSTRACT

In this study, novel copolymers consisting of blue and red chromophores are presented to induce emission tuning, enabling the definition of white light emission in a single polymeric layer. These aromatic polyether sulfones exhibit high molecular weights, excellent solubility and processability via solution deposition techniques. In addition, by carefully controlling the molar ratios of chromophores composition, the energy transfer mechanism, from blue to red chromophores, takes place enabling us to define properly the emission covering the entire range of the visible spectrum. The optical and photophysical properties of the monomers and copolymers were thoroughly investigated via NIR-Vis-far UV Spectroscopic Ellipsometry (SE), Absorbance and Photoluminescence (PL). These copolymers are used as an emissive layer and applied in solution-processed WOLED devices. The fabricated WOLED devices have been subsequently studied and characterized in terms of their electroluminescence properties. Finally, the WOLED devices possess high color stability and demonstrate CIE Coordinates (0.33, 0.38), which approach closely the pure white light CIE coordinates.

SELECTION OF CITATIONS
SEARCH DETAIL
...