Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38257479

ABSTRACT

Effective damage identification is paramount to evaluating safety conditions and preventing catastrophic failures of concrete structures. Although various methods have been introduced in the literature, developing robust and reliable structural health monitoring (SHM) procedures remains an open research challenge. This study proposes a new approach utilizing a 1-D convolution neural network to identify the formation of cracks from the raw electromechanical impedance (EMI) signature of externally bonded piezoelectric lead zirconate titanate (PZT) transducers. Externally bonded PZT transducers were used to determine the EMI signature of fiber-reinforced concrete specimens subjected to monotonous and repeatable compression loading. A leave-one-specimen-out cross-validation scenario was adopted for the proposed SHM approach for a stricter and more realistic validation procedure. The experimental study and the obtained results clearly demonstrate the capacity of the introduced approach to provide autonomous and reliable damage identification in a PZT-enabled SHM system, with a mean accuracy of 95.24% and a standard deviation of 5.64%.

2.
Polymers (Basel) ; 15(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36771774

ABSTRACT

Traditional methods for estimating structural deterioration are generally costly and inefficient. Recent studies have demonstrated that implementing a network of piezoelectric transducers mounted to critical regions of concrete structural members substantially increases the efficacy of the structural health monitoring (SHM) method. This study uses a recently developed electro-mechanical-admittance (EMA)-based SHM system for real-time damage diagnosis of carbon FRP (C-FRP) ropes installed as shear composite reinforcement in RC deep beams. The applied SHM technique uses the frequency response measurements of a network of piezoelectric lead zirconate titanate (PZT) patches. The proposed strengthening methods using C-FRP ropes as ETS and NSM shear reinforcement and the applied anchorage techniques significantly enhanced the strength and the overall performance of the examined beams. The retrofitted beams exhibited increased shear capacity and improved post-peak response with substantial ductility compared with the brittle failure of the non-strengthened specimens. The health condition and the potential debonding failure of the applied composite fiber material were also examined and quantified using the proposed SHM technique. Damage quantification of C-FRP ropes is achieved by comparing and assessing the values of several statistical damage indices. The experimental results demonstrated that the proposed monitoring system successfully diagnosed the region where the damage occurred by providing early warning of the forthcoming critical shear cracking of concrete and C-FRP rope debonding failures. Furthermore, the internal PZT transducers showed sound indications of the C-FRP rope's health condition, demonstrating a direct correlation with the mechanical performance of the fibers.

SELECTION OF CITATIONS
SEARCH DETAIL
...