Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Dev ; 35(3-4): 218-233, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33446568

ABSTRACT

Pancreatic ductal adenocarcinoma is a lethal disease characterized by late diagnosis, propensity for early metastasis and resistance to chemotherapy. Little is known about the mechanisms that drive innate therapeutic resistance in pancreatic cancer. The ataxia-telangiectasia group D-associated gene (ATDC) is overexpressed in pancreatic cancer and promotes tumor growth and metastasis. Our study reveals that increased ATDC levels protect cancer cells from reactive oxygen species (ROS) via stabilization of nuclear factor erythroid 2-related factor 2 (NRF2). Mechanistically, ATDC binds to Kelch-like ECH-associated protein 1 (KEAP1), the principal regulator of NRF2 degradation, and thereby prevents degradation of NRF2 resulting in activation of a NRF2-dependent transcriptional program, reduced intracellular ROS and enhanced chemoresistance. Our findings define a novel role of ATDC in regulating redox balance and chemotherapeutic resistance by modulating NRF2 activity.


Subject(s)
Carcinogenesis/genetics , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Pancreatic Neoplasms/physiopathology , Transcription Factors/metabolism , Humans , Protein Binding , Pancreatic Neoplasms
2.
Nat Commun ; 9(1): 2868, 2018 07 20.
Article in English | MEDLINE | ID: mdl-30030436

ABSTRACT

Pineoblastoma is a rare and highly aggressive brain cancer of childhood, histologically belonging to the spectrum of primitive neuroectodermal tumors. Patients with germline mutations in DICER1, a ribonuclease involved in microRNA processing, have increased risk of pineoblastoma, but genetic drivers of sporadic pineoblastoma remain unknown. Here, we analyzed pediatric and adult pineoblastoma samples (n = 23) using a combination of genome-wide DNA methylation profiling and whole-exome sequencing or whole-genome sequencing. Pediatric and adult pineoblastomas showed distinct methylation profiles, the latter clustering with lower-grade pineal tumors and normal pineal gland. Recurrent variants were found in genes involved in PKA- and NF-κB signaling, as well as in chromatin remodeling genes. We identified recurrent homozygous deletions of DROSHA, acting upstream of DICER1 in microRNA processing, and a novel microduplication involving chromosomal region 1q21 containing PDE4DIP (myomegalin), comprising the ancient DUF1220 protein domain. Expresion of PDE4DIP and DUF1220 proteins was present exclusively in pineoblastoma with PDE4DIP gain.


Subject(s)
Brain Neoplasms/genetics , Gene Deletion , Gene Duplication , Muscle Proteins/genetics , Nuclear Proteins/genetics , Pinealoma/genetics , Ribonuclease III/genetics , Adaptor Proteins, Signal Transducing , Adult , Aged , Child , Cytoskeletal Proteins , DEAD-box RNA Helicases/genetics , DNA Methylation , Exome , Genome, Human , Homozygote , Humans , Middle Aged , Pineal Gland/pathology , Protein Domains , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...